TKM COLLEGE OF ENGINEERING

(Government Aided and Autonomous)

celebrating 60 years of excellence

CHEMICAL ENGINEERING

B. Tech Curriculum 2023

&

First & Second Semester Syllabus

THANGAL KUNJU MUSALIAR COLLEGE OF ENGINEERING (Government Aided and Autonomous) KOLLAM-691005, KERALA

Abstract

TKMCE- Academics- B.Tech Curriculum 2023 & first year (S1 & S2) Syllabus of Chemical Engineering -orders issued

No: ACU3/664/2023

Date: 12/06/2023

Order

Read:

1. UGC order Ref: F. 22-1/2022(AC) dated 26th May 2022

2. U.O. No. KTU/ASST11(ADMIN)/3212/2022 dated 2nd September 2022

3. ACU3/1010/2022 dated 16th September 2022

The TKM College of Engineering was conferred with autonomous status by the UGC on May 26, 2022, vide Ref: 1, and the same was notified by the APJ Abdul Kalam Technological University, on September 2, 2022, vide ref. 2.

The first meeting of the Governing Body after the notification of autonomous status was held on September 15, 2022, and authorized the Principal to constitute the Academic Council as per the UGC (Conferment of Autonomous Status upon Colleges and Measures for Maintenance of Standards in Autonomous Colleges) Regulations, 2018. As per the resolution of the Governing Body, the Principal has constituted the Academic Council on September 16, 2022, vide ref. 3.

The third academic council meeting held on June 12, 2023, approved the B.Tech Chemical Engineering Curriculum 2023 and First Year (S1 & S2 semester) syllabus to be followed for the academic year 2023-24 onwards.

> LA Hadrida I LAT THANGAL KUNJU MUSALIAR COLLEGE OF ENGINEERING

KOLLAM-5

Copy to : All HODs, Deans, IQAC, COE, AA, AO, SS, JS()

Preface to the Curriculum

The new undergraduate curriculum of TKM College of Engineering is designed to provide students with the skills and knowledge they need to become competent engineers capable of tackling real-world problems in a variety of fields. The curriculum is carefully designed to expose students to both theoretical and practical aspects of engineering and provide them with hands-on experience in the latest technologies and tools used in the industry. The courses given in the curriculum are tailored in a student centric fashion to ensure that they receive well-rounded education with the flexibility to customize their own learning experience according to their interests and career goals.

The allocation of 163 credits, of which 160 are from courses and 3 from activity points, over a period of four years, with each year comprising of two semesters. All courses in the curriculum are designed to highlight the significance of applying knowledge to engineering and technology challenges, fostering creativity and innovation, and developing entrepreneurial abilities.

The curriculum includes project-based courses that emphasize hands-on learning and real-world applications supported by the fundamentals of engineering. These courses are offered with lab components, which allow students to gain practical experience in applying the concepts they have learned. Additionally, there are basic science courses with lab components, core courses without practical components, 4-hour lab courses, as well as 1/2-hour theory courses and 2-hour lab courses to provide breadth wise knowledge in the area of recent technological trends. These variety of courses ensures that students receive a well-rounded education and have the flexibility to customize their own learning experience according to their interests and career goals. In addition to these core subjects, students will have the opportunity to choose from a wide range of elective courses in specialized areas.

The industry internship included in the curriculum will give students the opportunity to apply their theoretical knowledge to practical situations and gain valuable experience. The students can opt for MOOC courses corresponding to Professional Elective and Open Elective Courses during their 8th semester, which will give them flexibility in doing internships.

Moreover, the extracurricular activities that students can participate in to earn activity points will provide them with a well-versed education and help them develop important skills such as leadership, teamwork, and communication. This is a great initiative by TKM College of Engineering to ensure that students not only excel academically but also develop important life skills that will help them in their future careers.

GENERAL COURSE STRUCTURE

1. Credit and Courses:

Classification	Credit assigned
1 Hour Lecture [L] per week	1 Credit
1 Hour Tutorial [T]per week	1 Credit
1 Hour Project [J] per week	1 Credit
2 Hours Practice/Practical [P] per week	1 Credit

Credits are a unit of measurement for course work and are based on the number of hours of instruction required per week. One hour of classroom lecture (L) that is 60 minutes long per week, carried out during all weeks of the semester, is considered one Instructional Unit or one Credit. The same goes for a tutorial (T) or a project (J) that is 60 minutes long per week and carried out during all weeks of the semester.

In addition, a minimum of 120 minutes per week of laboratory session, practical or field work, training (P) or a combination of these, carried out during all weeks of the semester, is also considered one Instructional Unit or one Credit.

Credit pattern

The B.Tech. program curriculum has a total of 160 academic credits and 3 additional pass/fail credits that can be gained through 100 activity points. It is expected that the program will accommodate courses from other disciplines so that students have multi-disciplinary exposure. Additionally, the program should provide sufficient opportunities for students to enhance their communication, soft skills, managerial skills, and technical skills. Depending on the program, the courses should fall under engineering, basic science, humanities science, and management categories. The structure of the UG program should essentially have the following categories of courses with the breakup of credits as given:

S1 No:	Category	Code	Credit Breakup	
1	Humanities and Social Sciences including Management courses	HSMC	16	
2	Basic Science courses	BSC	22	
3	Engineering Science courses including workshop, drawing, basics of electrical/mechanical/computer etc.	ESC	27	
4	Professional Core Courses PCC			
5	Professional Elective courses relevant to chosen specialization/ branch	PEC [IEC] [MS]	12	
6	Open Electives – Electives from other OEC technical and /or emerging areas		9	
7	Project work, seminar and internship in industry or elsewhere	PROJ	15	
8	Mandatory Courses	MC		
9	Mandatory Student Activities	SA	* 3	
	Total Academic/Learning credits		160	
	Optional Specialization			
10	Honors	HR	20	
11	Minor			
	Total Academic/Learning credits with optional	l specialization	180	

^{*}Not included in the calculation of Total Academic/Learning credits

10 to 15 % deviation in credits is permitted under each discipline. While developing the curriculum, the department offering the program should ensure that the above distribution shall be attained by the students upon their completion of their program. Either Minor or Honors can be opted from the optional specialization.

The courses are organized into 1/2/3/4/5/6 credit courses based on the content delivery mechanism and desired depth of the course. The delivery methods include Theory-only, Theory with tutorial, Theory with practice, Theory with project etc. The L-T-P-J notation for each course signifies the allocation of hours for content delivery in terms of Lecture (L), Tutorial (T), Practical (P), and Project (J) per week, as well as the credit earned from the course. Apart from lecture, tutorial, practical/practice and the project hours the curriculum offers Self learning hours(S) that indicate the number of hours students are expected to spent for activities that should be completed outside the class defined by the faculty handling courses, and for the activities to support learning, initiated by the students themselves without guidance or direction from course faculty. For each course, Self-learning hour per week is calculated as:

$$S = (L*1+T*0+P*1+[J/2])$$

where J belongs to the project component of a project-based course Thus, the L-T-P-J-S-C for each course indicates the number of credits delivered as Lecture (L), Tutorial (T), Practical (P), Project (J), Self-study hours (S) and the total instructional delivery indicated as Credits (C).

$$C = L + T + [P/2] + J$$

S1 No.	Lecture-Tutorial-Practical/ Project [L-T-P-J]	Self- learning hours[S]	Credit [C]	Description
1	1-0-0-0	1/9	1	Theory
2	2-0-0	2	2	course without End Semester Examination [ESE]
3	2-0-2-0	4	3	Theory course embedded with practical
4	2-1-0-0	2	3	Theory
	3-1-0-0	3	4	course embedded with tutorial
5	3-0-0-0	3	3	Theory course
6	3-1-2-0	5	5	Theory
7	2-1-2-0	4	4	course embedded with practical and tutorial

8	1-0-2-0	3	2	Theory
		_		course
				embedded
				with
				practical
				without ESE
9	3-0-2-0	5	4	Theory
9	3-0-2-0	3	7	course
				embedded
				with
1.0	2.2.2	_	_	practical
10	2-0-2-2	5	5	Project
	VARC	01	-	based
				course
11	0-0-2-0	2	OI	Practical
	1/83/		130	course
	1/0//	-	11.	without ESE
12	0-0-4-0	4	2	Practical
		77.77	7	course
13	0-0-6-0	6	3	Seminar
14	0-0-12-0	12	6	Final year
		16		Project
	Mandatory Courses (Charles and Table		15511
15	2-0-0-0	2	0	Theory
	3-0-0-0	3	1	Courses
16	2-0-2-2	5	0	Theory
		Alinin	e î .	course
		125	31.	embedded
	11.67 138 383		1.1	with project
17	0-0-0-2	1	0	Socially
	11387 6 8310		18	Relevant
	The same		100	Project
	Minor/ Honors	Course	731	
18	4-0-0-0	4	4	Theory
	QIIII	010	1	course
19	0-0-0-4	2	4	Project only

Course Code:

In general, the curriculum of each program consists of courses that are grouped into different heads such as Program Core (PCC), Professional Elective (PEC), Project-based courses (PBC), and Open Elective courses (OEC). The details of such courses are given below.

Program Core (PCC) or Professional Core

Program or Professional Core (PCC) courses are program-specific and are required for students to complete in order to be eligible for the degree. PCC courses are

typically designed to provide students with a strong foundation in the core concepts and skills of their chosen field of study. By completing the PCC courses, students will have a solid understanding of the fundamental principles and practices of their field, which will prepare them for more advanced coursework and professional work in the future.

Project based course (PBC):

Project-based courses (PBC) are designed to provide students with a deeper knowledge and understanding of real-world challenges and problems in their field of study. By taking PBC courses, students have the opportunity to actively explore and apply theoretical knowledge to real-world problems. This can help them develop problem-solving skills and gain practical experience that will be valuable in their future careers. The ultimate aim of an engineering student is to resolve problems by applying theoretical knowledge, and PBC courses can be a great way to achieve this goal. Doing multiple projects can also help students develop a range of skills, from project management and teamwork to communication and presentation skills.

Professional Elective (PEC):

Professional Elective (PEC) courses are designed to provide students with an opportunity to study more advanced, applied, or specialized courses than the basic courses they study as part of their program or professional core courses. PEC courses can help students gain in-depth knowledge of a specific sub-field that they have chosen as their major specialization. These courses are typically more focused and specialized than program core courses, and can help students develop expertise in a particular area of their field.

PEC courses provide students with the flexibility to tailor their education to their interests and career goals, while also ensuring that they have a strong foundation in the core concepts and skills of their field.

Micro specialization:

Electives can be streamlined to certain sub-disciplines of the B.Tech program, which are sometimes referred to as micro-specializations. This allows students to graduate with different micro-specializations or to choose not to specialize in a particular area by selecting a set of professional elective courses that are aligned with industry requirements or higher studies. A micro-specialization can be acquired by opting any two thematic courses from the list of professional electives which is in line with a Program Core Course.

Open Elective courses (OEC):

Open Electives are courses that students can take alongside their primary area of study. These courses are designed to give students greater flexibility and control over their curriculum, allowing them to pursue their interests and passions. Open Electives also promote cross-disciplinary and multidisciplinary learning, as students have the freedom to choose courses from different streams. This can be a great way to broaden the knowledge and skills and to explore new areas of interest.

Research based Mini Project:

Focuses on strengthening the understanding of student's fundamental concepts through the application of theoretical concepts and to boost their skills and widen the horizon of their thinking in research by implementing/working a recent research paper in the domain of study.

Project:

The research-based project in the seventh semester shall be continued as the project in the eighth semester.

<u>Minor and Honours courses:</u> The Minor in Engineering program allows students to gain interdisciplinary experience and exposure to concepts and perspectives that may not be part of their degree programs.

- ➤ The student should earn additional 20 credits to be eligible for the award of B. Tech Degree with Minor.
- ➤ Out of the 20 credits, 12 credits should be earned by undergoing a minimum of three courses, of which one course shall be a mini project based on the chosen area.
- ➤ The remaining 8 credits could be acquired through 2 MOOCs.

This program gives a great opportunity for students to broaden their understanding of the engineering profession and gain exposure.

Seminar

Seminars are given to provide opportunities for students to present their research or ideas on a specific topic to a peer audience. Seminars can be used to enhance students' communication skills, critical thinking skills, and ability to synthesize information from technical publications. It can be also used to encourage students to read and collect recent and reliable information from technical publications including peer-reviewed journals, conference papers, books, project reports, and other sources. The purpose of seminars is to create a learning environment where students can engage in active discussions and develop their presentation skills. By participating in seminars, students can gain valuable experience and develop the skills they need to succeed in their future careers.

Honors

Honors is intended for a student to gain expertise/specialise in an area inside his/her B.Tech discipline and to enrich knowledge in emerging/advanced areas in the branch of engineering concerned. Upon completion of Honors, a student will be better equipped to perform research in her/his branch of engineering.

- ➤ The student should earn additional 20 credits to be eligible for the award of B. Tech Degree with Honors.
- ➤ Out of the 20 credits, 12 credits should be earned by undergoing a minimum of three courses, of which one course should be a mini project based on the chosen area.
- ➤ The remaining 8 credits could be acquired through 2 MOOCs

Activity points:

To qualify for a B. Tech degree, all students are required to earn a minimum of 100 activity points from various activity segments listed by the institution. These activity points are awarded on a pass/fail basis and are mandatory for obtaining the degree. While these activity points carry three credits, no grade is given for these credits, and they are not included in the calculation of the CGPA. The purpose of these activity points is to encourage students to participate in various extracurricular activities, such as sports, cultural events, and community service. For lateral entry students who join from the third semester, the activity point requirement is reduced to 75. The points earned by the student will be indicated in the consolidated academic statement, which is a record of the student's academic performance throughout their program.

The activity points can be earned by undertaking activities from different categories. Some of the categories are:

- (i) Internship
- (ii) MOOC/GRE/ TOEFL /GATE/ IELTS/MAT/SAT/CAT etc/ Foreign language proficiency
- (iii) Participation and organization of Co-curricular activities, Extracurricular activities.

Socially Relevant Projects

The main purpose of Socially Relevant Projects is to link the institution with the society for mutual benefit. The community will benefit from the focused contribution of students towards local development. At the same time, the institution finds an opportunity to develop social sensibility and responsibility among students and emerge as a socially responsible institution.

The objectives of Socially Relevant Projects are:

- ✓ To provide students with an opportunity to engage in meaningful community service and apply their learning to real-world situations.
- ✓ To promote civic responsibility and leadership skills among students, and to foster a deeper understanding of social issues.
- ✓ To facilitate the development of partnerships between colleges and local communities, and to contribute to local development.
- ✓ To encourage students to think critically and creatively about social issues, and to develop innovative solutions to address them.
- ✓ To promote interdisciplinary learning and collaboration, and to provide opportunities for students to apply their knowledge and skills across different fields.

Activities for Socially Relevant Project

- ❖ Conducting surveys and research on social issues and concerns to gain a better understanding of the problem and identify potential solutions.
- ❖ Developing and implementing educational programs to promote awareness and understanding of social issues and concerns.
- ❖ Collaborating with local NGOs and community groups to organize events and activities that promote social welfare and community development.
- ❖ Developing and implementing social welfare programs that address the needs of marginalized and vulnerable communities, such as homeless individuals, refugees, and low-income families.
- ❖ Conducting community service activities, such as volunteering at local shelters, food banks, and community centers.
- ❖ Developing and implementing environmental conservation programs that promote sustainable practices and reduce the impact of human activities on the environment.
- ❖ Creating and distributing educational materials, such as pamphlets and brochures, to raise awareness about social issues and concerns.
- ❖ Organizing fundraising events to support social welfare programs and community development initiatives.
- ❖ Engaging in advocacy and lobbying efforts to influence public policy and promote social justice.

Procedure for doing Socially Relevant Project

- ❖ Assign a group of students or a single student to a particular habitation, village, or municipal ward in the near vicinity of their place of stay.
- Conduct a survey of the habitation to gain a better understanding of the social issues and concerns that need to be addressed. A common survey format could be designed to ensure consistency.
- Develop a project work related to the student's domain or subject area that addresses the identified social issues and concerns. The project should be designed to be socially relevant and have a positive impact on the community.
- ❖ Implement the project work with the help of the local community and relevant authorities. This could include organizing awareness programs, developing and implementing educational programs, conducting community service activities, and engaging in advocacy and lobbying efforts.
- ❖ Monitor and evaluate the project work to ensure that it is having the desired impact on the community. This could include conducting surveys and research, gathering feedback from the local community, and tracking key performance indicators.
- ❖ Document the project work and its impact on the community, and share the findings with relevant stakeholders, including the local community, government authorities, and academic institutions

Internships

Internships provide a great opportunity for students to gain exposure to the industry and prepare for their future work environment. As per the guidelines of the institution, all B.Tech students are required to undergo a minimum of six to eight weeks of internship in a reputed industry or research organization at another institute of higher learning and repute (Academia). This can be done any time after their first year of study and before the seventh semester. Students can avail this training in a single stretch or in piece-meal basis with each stretch shall be of not less than two weeks. The organization for doing internship shall be selected/decided by the students in consultation with the senior faculty advisor.

For students who have completed a 6-to-8-week internship at a reputed organization or a 3-to-5-month duration internship leading to placement can convert their work during internship to project work in the eighth semester, subject to approval from the concerned department.

Structure of Course code:

Each course will be identified by a unique Course Code consisting of eight alpha numeric characters (Two digits, three alphabets which together followed by three digits) and is represented as **YYXXCSNN**, which can be interpreted as: YY – Regulation Year XX - Course Category Code C- Course Delivery Mode, S – Semester Number (it can have a number from 1 to 8) NN- Course Sequence Number

For eg: 23CET303- is a theory course offered by the civil engineering department in the third semester of the 2023 scheme.

23MEL408 - is a laboratory course offered by the mechanical engineering department in the fourth semester of the 2023 scheme.

23CSP607 - - is a laboratory course offered by the mechanical engineering department in the sixth semester of 2023 scheme.

Year of Regulation YY	Course category XX	Course delivery mode C	Semester Number S	Serial No. of course
23 for 2023	BY -BIOLOGY	T - THEORY ALONE	01	NN 01
regulation	BY -BIOLOGY	I - IHEORY ALONE	2	01
regulation	CE - CIVIL	P - THEORY	03	03
	ENGINEERING	EMBEDDED WITH	etc.	etc.
	CH - CHEMICAL ENGINEERING	PRACTICAL COURSE		
	CS - COMPUTER SCIENCE	L- LABORATORY COURSE		
	&ENGINEERING	J - THEORY		
	CY – CHEMISTRY	EMBEDDED WITH PROJECT	37/	
/	EC- ELECTRONICS	(PROJECT BASED	111	
1/	& COMMUNICATION	COURSE)	101	
	ENGINEERING	E – PROFESSIONAL	100	
11/-	EE – ELECTRICAL &	ELECTIVE COURSE	100	111
1/3	ELECTRONICS ENGINEERING	O - OPEN ELECTIVE COURSE	13	
1/2	ER – ELECTRICAL& COMPUTER ENGINEERING	H - HONORS COURSE	1	
1/3	ES - ENGINEERING SCIENCE COURSE	M - MINOR COURSE		
1	HU - HUMANITY,	S - SEMINAR	13/	/
	SOCIAL SCIENCE	R - RESEARCH	05/1	
	AND MANAGEMENT	BASED MINI PROJECT	-///	
	MA - MATHEMATICS	D - PROJECT		
	MC- MANDATORY			
	COURSE	N - INTERNSHIP		
	ME - MECHANICAL			
	ENGINEERING			
	PY - PHYSICS			

Assessment

In each semester, candidates shall be evaluated both by Continuous Internal Assessment (CIA) and End Semester Examinations (ESE) or by Continuous Internal

Assessment alone based on the credit assigned to the course. The Continuous Internal assessment shall be on the basis of the day-to-day work, periodic tests, assignments, quizzes, presentations and other suitable tools devised by the course faculty. The faculty member(s) concerned should carry out the CIA for the courses allotted to him/her and should perform the learning assessments in the following perspectives with respect to all courses:

- Evaluation with respect to knowledge
- Evaluation with respect to Understanding
- Evaluation with respect to skill
- Evaluation with respect to Applications and/or
- Higher Order Thinking Skills

For the Practice part of a course or a pure Practice (Laboratory/Practical) course; due weightage for carrying out experiments, such as observations, collection of data, analysis, interpretation of results, inferences and also timely submission of record work done would all carry due weightage based on the type of laboratories and the course. The CIA marks for individual courses shall be computed by giving weightage to the following parameters given in the table below.

	Mark Distribution of CIA									
	4)	The	ory (L- T)	Practic	al (P)	Proj	ect (J	Γ)	
Course Structure (L-T-P-J)	Attendance	Assignment	Test-1	Test-2	Class work	Lab Exam	Evaluation 1	Evalaution-2	Report	Total Marks
1-0-0-0	5	25	20	-	-	-	-	-	-	50
2-0-0-0	5	35	30	30	-	-	-	-	-	100
1-0-2-0	5	10	20	-	25	40	-	-	-	100
0-0-2-0	5	-	-	-	35	10	-	-	-	50
0-0-4-0	5	-	-	-	25	30	-	-	-	60
2-1-0-0	5	15	10	10	-	-	-	-	-	40
3-0-0-0	5	15	10	10	-	-	-	-	-	40
3-1-0-0	5	15	10	10	-	-	-	-	-	40
4-0-0-0	5	15	10	10	-	-	-	-	-	40
2-0-2-0	5	15	10	-	20	10	-	-	-	60

3-1-2-0	5	15	10	10	20					60
2-1-2-0	5	10	10	10	15	10	-	-	-	60
3-0-2-0	5	15	10	10	10	10	-	-	-	60
\$ 2-0-2-2	5	10	10		15		5	10	5	60
*2-0-2-2	5	15		10	20		10	20	20	100
& O-O-4-O	5				55	40				100
\$ For PBC course	\$ For PBC course only, * For Idea lab only & For Manufacturing Practices only									

Assessment of Assignment component of CIA

Based on the course category the number of assignments that shall be given for each course may vary. The table given below gives the details about it.

Course Category	L-T-P-J	Credit	Assessment of Assignment component of CIA
Theory Course	1-0-0-0	1	
Theory course	2-0-0-0	2	One assessment per two
Theory Embedded with Practical	1-0-2-0	2	and half module
Project Based Course	2-0-2-2	5	
	2-1-0-0	3	
Theory Course	3-0-0-0	3	
	3-1-0-0	4	
	4-0-0-0	4	One assessment per module, best of FOUR shall
	2-0-2-0	3	be considered for the calculation of CIA.
Theory Embedded with	3-1-2-0	5	
Practical	2-1-2-0	4	
	3-0-2-0	4	

Evaluation Type, CIA & ESE Mark Distribution:

The evaluation type, CIA & ESE mark distribution for courses with various course structure is given in the following table:

Evaluation Type	Course Category	L-T-P-J	Credit	CIA Marks	ESE Marks
	mi o	1-0-0-0	1	50	
	Theory Course	2-0-0-0	2		
	Theory Embedded with Practical	1-0-2-0	2	100	
CIA only	Practical	0-0-2-0	1	50	_
Chroniy	Fractical	0-0-4-0	2		
	Seminar	0-0-6-0	3		
	Project [Minor/ Honors]	0-0-0-4	4	100	
	Project	0-0-12-0	6		
		2-1-0-0	3	40	
	Theory Course	3-0-0-0	3		60
		3-1-0-0	4		60
		4-0-0-0	4		
CIA + ESE		2-0-2-0	3		
CIII · LOL	Theory Embedded with	3-1-2-0	5	60	
	Practical	2-1-2-0	4		40
		3-0-2-0	4		10
	Project Based Course	2-0-2-2	5		

Evaluation pattern for End Semester Examination

The end-semester final examination should have learning assessments from the following perspectives with respect to all courses:

- Evaluation with respect to Knowledge
- Evaluation with respect to Understanding
- Evaluation with respect to Applications

Based on the ESE marks [60/40], separate evaluation pattern should be followed and is given in table below.

PATTERN	PART A	PART B	ESE Marks
PATTERN 1	10 Questions, each question carries 2 marks Marks: (2x10 = 20 marks)	2 questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 2 sub divisions. Each question carries 8 marks.	60

		Marks: (5x8 = 40 marks) Time: 3 hours	
	Total Marks: 20	Total Marks: [5x8 = 40 marks]	
PATTERN 2	SALIAI	2 questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 2 sub divisions. Each question carries 8 marks. Marks: (5x 8 = 40 marks) Time: 2.5 hours	40
/	Total Marks: 0	Total Marks: [5x8 = 40 marks]	2//

Pass minimum for a course shall be 40% for the End Semester Examination, 40% of CIA, and 50% for CIA and ESE put together. Letter grade 'F' will be awarded to the student for a course if either his/her mark for the ESE is below 40% or mark for the CIA is below 40% or the overall mark [Continuous Internal Evaluation + End Semester Examination] is below 50%. For courses with only CIA and no ESE, a minimum of 50% of CIA mark is required.

Grade and Grade point

Grading is based on the overall percentage marks obtained by the student in a course. The grade card shows the grades against the courses the student has registered. Semester grade card give the grade for each registered course, Semester Grade Point Average (SGPA) for the semester as well as Cumulative Grade Point Average (CGPA). The details of assigning Grade point and Grade are given in the table below.

Grades	Grade Point [GP]	% of Total Marks obtained
S	10	90% and above
A+	9.0	85% and above but less than 90%
A	8.5	80% and above but less than 85%
B+	8	75% and above but less than 80%
В	7.5	70% and above but less than 75%
C+	7.0	65% and above but less than 70%

С	6.5	60% and above but less than 65%
D	6	55% and above but less than 60%
P [Pass]	5.5	50% and above but less than 55%
F [Fail]	0	Below 50% (CIA + ESE) or Below 40 % for ESE Below 40 % for CIA Below 50% for courses with only CIA and no ESE
FE	0	Failed due to lack of eligibility criteria
1	VAR CO	Could not appear for the end semester examination but fulfils the eligibility criteria.
First Class with Distinction		CGPA 8.0 and above
First Class		CGPA 6.5 and above
Equivalent percentage mark s	shall be = 10 * CGP.	A – 2.5

Allotted and Cumulative Credits

The allotted and cumulative credits of circuit and non- circuit branches are given in table below

Semester		branches EE &ER]	Non-Circuit branches [CE, ME &CH]				
	Allotted Credits	Cumulative Credits	Allotted Credits	Cumulative Credits			
First	19	-1-11	22	12011			
Second	22	41	20	42			
Third	24	65	23	65			
Fourth	21	86	21	86			
Fifth	20	106	20	106			
Sixth	19	125	19	125			
Seventh	20	145	20	145			
Eighth	15	160	15	160			

Circuit branches: Computer Science & Engineering [CS], Electronics & Communication [EC], Electrical & Electronics [EC] and Electrical & Computer Science [ER]

Non-Circuit branches: Civil [CE], Mechanical [ME] and Chemical Engineering [CH]

	FIRST SEMESTER												
SI	Slot	Code	Category	Title	L	Т	P	J	S	No. of	No. of Credits	To Ma	
No	IS	coue	Cate	Title	_	•		J	3	Hours	No Cre	CIA	ESE
1	Α	23MAP101	BSC	Calculus and Linear Algebra	3	1	2	0	5	6	5	60	40
2	В	23CYP103	BSC	Engineering Chemistry	2	1	2	0	4	5	4	60	40
3	С	23EST104	ESC	Fundamentals of Electrical Engineering	3	0	0	0	3	3	3	40	60
4	D	23ESP108	ESC	Engineering Graphics	3	0	2	0	5	5	4	60	40
5	G	23ESL109	ESC	Manufacturing Practices	0	0	4	0	4	4	2	100	
6	Κ	23MCT110	MC	Sports and Yoga	2	0	0	0	2	2	O	100	/
7	_	23CHT113	PCC	Introduction to Chemical Engineering	2	0	0	0	2	2	2	100	
8	J	23EST114	ESC	Basics of Electronics Engineering	2	0	0	0	2	2	2	100	
	TOTAL						13	28	29	22			

	SECOND SEMESTER												
SI No	Slot	Code	Category	Title	L	Т	P	J	s	No. of Hours	No. of Credits	To Ma	
			Са									CIA	ESE
1	Α	23MAP201	BSC	Differential Equations and Transforms	3	1	2	0	5	6	5	60	40
2	В	23PYP202	BSC	Engineering Physics	2	1	2	0	4	5	4	60	40
3	С	23ESP204	ESC	Problem- solving and Programming	3	0	2	0	5	5	4	60	40
4	E	23ESP207	ESC	Technical English for Engineers	2	0	2	0	4	4	3	60	40
5	Ν	23MCJ210	MC	IDEA Lab Workshop	2	0	2	2	5	6	0	100	
6	0	23HUL211	HSMC	Design Thinking	0	0	2	0	2	2	13.	50	
7	F	23HUT212	HSMC	Universal Human Values-II	2	1	0	0	2	3	3	40	60
	TOTAL 27 31 20									31	20		

	THIRD SEMESTER												
Sl	Slot	Cate Booy			Т	В	_	S	Hours	Credits	To Ma	tal rks	
No	SI	Code	Cate	Title	L	1	P	J	3	Ног	Cre	CIA	ESE
1	A	23MAT301	BSC	Mathematics - III	3	1	0	0	3	4	4	40	60
2	К	23EST302	ESC	Overview of Indian Chemical Industries	2	0	0	0	2	2	2	100	
3	В	23СНЈ303	PBC	Sustainable Development and Pollution Control	2	0	2	2	5	6	5	60	40
4	С	23CHP304	BSC	Chemistry for Process Engineers	2	1	2	0	4	5	4	60	40
5	D	23CHP305	PCC	Material & Energy Balance Computations	2	1	0	0	2	3	3	40	60
6	Е	23HUT306	нѕмс	Entrepreneurship and Startups	3	0	0	0	3	3	3	40	60
7	I	23CHT307	PCC	Process Safety	2	0	0	0	2	2	2	100	1
8	M/ R	23CHM309	MR/ RL	MINOR/ REMEDIAL	4	0	0	0	5		4/0	40	60
	TOTAL							3	21	25	23	1	

	FOURTH SEMESTER												
Sl	Slot	Code	Category	Title I		Т	P	ı	S	Hours	Credits	Tot Mar	-
No	S	douc	Cate	1700		_	-	,		Ho	Cre	CIA	ESE
1	A	23CHT401	PCC	Chemical Engineering Thermodynamics	3	1	0	0	3	4	4	40	60
2	В	23CHT402	PCC	Numerical Methods for Chemical Engineers	2	1	0	0	2	3	3	40	60
3	С	23CHP403	PCC	Fluid & Particle Mechanics	2	1	2	0	4	5	4	60	40
4	D	23CHJ404	PBC	Heat Transfer Operations	2	0	2	2	5	6	5	60	40
5	Е	23HUT405	HSMC	Life Skills & Professional Ethics	3	0	0	0	3	3	3	40	60
6	F	23MCT406	MC	Environmental Sciences	3	0	0	0	3	3	0	40	60
7	I	23CHT407	PCC	Piping and Instrumentation Fundamentals	2	0	0	0	2	2	2	100	
8	M/ H/ R	23CHM409 / 23CHH409	MR/ HR/ RL	MINOR/HONOURS/ REMEDIAL	4	0	0	0	y	1	4/ 4/ 0	40	60
	TOTAL								21	26	21		

	FIFTH SEMESTER												
Sl	Slot	Code	Category	Title	L	Т	P	ı	S	Hours	lits	Tota Mar	-
No	S	Code	Cate	THE	L	•	1	,	3	Но	Credits	CIA	ESE
1	A	23CHT501	PCC	Mass Transfer Operations - I	2	1	0	0	2	3	3	40	60
2	В	23СНЈ502	PCC	Kinetics & Reactor Design	2	0	2	2	5	6	5	60	40
3	С	23CHT503	PCC	Transport Phenomena	2	1	0	0	2	3	3	40	60
4	D	23CHP504	PCC	Particle Technology	2	1	2	0	4	5	4	60	40
5	Е	23HUT505	HSMC	Economics & Management for Chemical Industries	3	0	0	0	3	3	3	40	60
6	F	23MCT506	МС	Constitution of India	3	0	0	0	3	3	0	40	60
7	I	23EST507	ESC	Energy & Environmental Audit	2	0	0	0	2	2	2	100	
8	M/ H/ R	23CHM509 / 23CHH509	MR/ HR/ RL	MINOR/HONOURS/ REMEDIAL	4	0	0	0	y	1	4/ 4/ 0	40	60
		1/3	T	OTAL	Œ,	3	9	ÿ	21	25	20	/	

	SIXTH SEMESTER												
Sl	Slot	Code	Category	Title	L	Т	P	I	S	Hours	lits	_	tal rks
No	S	couc	Cate		ľ	_		,	J	Ho	Credits	CIA	ESE
1	A	23CHT601	PCC	Heterogeneous Catalysis & Reactor Design	2	1	0	0	2	3	3	40	60
2	В	23CHP602	PCC	Instrumentation & Process Control	2	0	2	0	4	4	3	60	40
3	С	23CHP603	PCC	Mass Transfer Operations -II	2	0	2	0	4	4	3	60	40
4	D	23CHE6X4	PEC	Professional Elective-1	3	0	0	0	3	3	3	40	60
5	Е	23CHE6X5 / 23CHI6X5	PEC/ IEC	Professional Elective-2 / Industry Elective	3	0	0	0	3	3	3	40	60
6	F	23CHS606	SR	Seminar	0	0	4	0	4	4	2	100	١.
7	U	23SPJ607	MC	Socially Relevant Project	0	0	0	2	1	2	0	100	1
8	Í	23ESP608	ESC	Artificial Intelligence in Chemical Engineering	1	0	2	0	3	3	2	100	
9	M/ H/ R	23CHM609 / 23CHH609	MR/ HR/ RL	MINOR/HONOURS/ REMEDIAL	4	0	0	0	/		4/ 4/ 0	40	60
	TOTAL								24	26	19		

X : Serial No. of Elective course in the respective basket.

	SEVENTH SEMESTER												
Sl	Slot	Code	Category	Title	L	Т	P	ī	S	Hours	lits	Tot Mar	-
No	SI	Coue	Cate	Title	ь	1	r	,	3	Ho	Credits	CIA	ESE
1	A	23CHP701	PCC	Computer Aided Process Design	2	1	2	0	4	5	4	60	40
2	В	23CHP702	ESC	Biology & Biochemical Engineering	2	1	2	0	4	4	4	60	40
3	С	23CHE7X3	PEC	Professional Elective-3	3	0	0	0	3	3	3	40	60
4	D	23CH07X4 / 23CHI7X4	OEC /IEC	Open Elective 1/ Industry Elective	3	0	0	0	3	3	3	40	60
5	U	23CHR705	RMP	Research Based Mini Project	0	0	12	0	12	12	6	100	
6	M/ H/ R	23CHM709 / 23CHH709	PRM/ HR/ RL	PROJECT IN MINOR/ HONOURS/ REMEDIAL	0	0	0	4	120		4/4/0	100	
		5	TOT	ΓAL	7)	5	1	Ar	26	27	20	Q.	

	EIGHTH SEMESTER												
Sl	Slot	Code	Category	Title L T P J			S	Hours	Credits	To Ma	tal rks		
No	S	Code	Cate	Title	L	-	•	,	3	Но	Cre	CIA	ESE
1	A	23CHE8X1	PEC	Professional Elective- 4/MOOC	3	0	0	0	3	3	3	40	60
2	В	23CH08X2	OEC	Open Elective-2 /MOOC	3	0	0	0	3	3	3	40	60
3	С	23CH08X3	OEC	Open Elective- 3 /MOOC	3	0	0	0	3	3	3	40	60
4	U	23CHD804 / 23CHN804	PR/ IP	PROJECT/ INTERNSHIP	0	0	12	0	12	12	6	100	
5	H/R	23СНН809	PRH/RL	PROJECT IN HONOURS/ REMEDIAL	0	0	0	4			4/0	100	
	TOTAL								21	21	15		

Professional Elective Details

Slot	Code	Category	Title
	23CHE614		Air Pollution Monitoring and Control
	23CHE624	VAR C	Fire Safety Engineering
	23CHE634	AL	Process Modelling and Simulation
	23CHE644	A 70	Oil & Natural Gas Engineering
D	23CHE654	PEC	Corrosion Engineering
- 1	23CHE664		Fuels and Combustion
	23CHE674		Nuclear Engineering
1	23CHE684		Polymer Technology
110	23CHE694		Bioreactor Analysis and Design

Slot	Code	Category	Title
	23CHE615		Water and Wastewater Engineering
	23CHI625		Occupational Health & Hygiene
	23CHE635	VAR CO	Optimization of Chemical Processes
	23CHI645		Petroleum Refining and Petrochemical Technology
E	23CHI655	PEC/ IEC	Process Plant Utilities
1	23CHE665		Fuel Cell Technology
- /	23CHE675		Hydrogen Energy Technology
	23CHE685		Nanomaterials & Nanotechnology
1	23CHI695		Fermentation Technology

Slot	Code	Category	Title
	23CHE713		Municipal Solid and Biomedical Waste management
	23CHE723	=	Hazard Analysis and Risk Management
	23CHE733	IAH	Computational Fluid Dynamics
	23CHE743		Pipeline Transportation of Oil & Gas
С	23CHE753	PEC	Electrochemical Engineering
- /	23CHE763	10	Renewable Energy and Environment
	23CHE773	196	Minerals & Metal Processing Industries
- 1	23CHE783		Food Technology
1	23CHE793		Drugs & Pharmaceuticals Technology

Slot	Code	Category	Title
	23CHE811		Process Design for Pollution Control
	23CHE821	VAR	Rescue and Disaster Management
	23CHE831	31	Statistical Design and Analysis of Experiments
	23CHE841	+1	Enhanced Oil Recovery
A	23CHE851	PEC	Electrochemical Energy Conversion and Storage
- 1	23CHE861		Process Plant Simulation
	23CHE871		Waste to Energy Conversion
1	23CHE881		Colloids and Interface Engineering
113	23CHE891		Engineering of Climate Change

Open Elective Details

Open Elective - 1

Slot	Code	Category	Title
A	23CHI714	OEC/	Process Safety and Hazard Assessment
Α	23CHO724	IEC	Process Utility & Pipeline Design

Open Elective – 2

Slot	Code	Category	Title
	23CHO812	- TRITT	Waste to Energy Conversion
В	23CHO822	OEC	Industrial Waste Management
1	23CHO832		Energy Technology and Energy Management

Open Elective - 3

Slot	Code	Category	Title
	23CHO813		Petroleum Resources and Petrochemicals
С	23CHO823	OEC	Pollution Control in Process Industries
	23CHO833		Hydrogen Energy Technology

Details of Micro specializations Offered

Micro specialization - 1 (Environmental Engineering)

Base Course: Sustainable Development and Pollution Control

Slot	Code	Category	Title
D	23CHE614	PEC	Air Pollution Monitoring and Control
E	23CHE615	PEC	Water and Wastewater Engineering
С	23CHE713	PEC	Municipal Solid and Biomedical Waste management
A	23CHE811	PEC	Process Design for Pollution Control

Microspecialization - 2 (Safety Engineering)

Base Course: Process Safety

Slot	Code	Category	Title
D	23CHE624	PEC	Fire Safety Engineering
E	23CHI625	IEC	Occupational Health & Hygiene
С	23CHE723	PEC	Hazard Analysis and Risk Management
A	23CHE821	PEC	Rescue and Disaster Management

Microspecialization - 3 (Mathematical and Computational Methods)

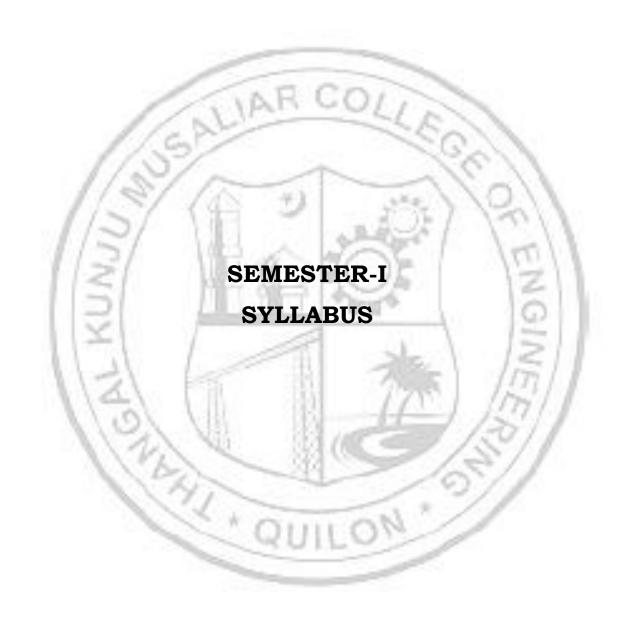
Base Course: Numerical Methods for Chemical Engineers

Slot	Code	Category	Title
D	23CHE634	PEC	Process Modelling and Simulation
E	23CHI635	IEC	Optimization of Chemical Processes
С	23СНЕ733	PEC	Computational Fluid Dynamics
A	23CHE831	PEC	Statistical Design and Analysis of Experiments

Microspecialization - 4 (Petroleum Engineering)

Base Course: Mass Transfer Operations – I

Slot	Code	Category	Title
D	23CHE644	PEC	Oil & Natural Gas Engineering
E	23CHI645	IEC	Petroleum Refining and Petrochemical Technology
С	23CHE743	PEC	Pipeline Transportation of Oil & Gas
A	23CHE841	PEC	Enhanced Oil Recovery


HONOURS

Semester	(Advance	SKET I ed Chemical neering)		SKET II Engineering)		SKET III ss Control)
Sen	Course No.	Course Name	Course No.	Course Name	Course No.	Course Name
S4	23СНН409	Computational Methods in Chemical Engineering	23СНН409	Biomass Conversion and Biorefinery	23СНН409	Modern Methods of Instrumentation
S5	23СНН509	Advanced Heat Transfer	23СНН509	Technologies for Clean and renewable energy production	23СНН509	Soft Computing Techniques
S6	23СНН609	Advanced Fluid Mechanics	23СНН609	Energy conservation and waste heat recovery	23СНН609	Modern Control Theory
S7	23СНН709	Process Integration & Intensification	23СНН709	Energy Economics and Policy	23СНН709	Advanced Process Control
S8	23СНН809	Project	23СНН809	Project	23СНН809	Project

MINOR

Semester	Course No.	Course Name
S3	23CHM309	Introduction To Chemical Engineering
S4	23CHM409	Mechanical Unit Operations
S5	23CHM509	Heat And Mass Transfer
S6	23CHM609	Chemical Reaction Engineering
S7	23CHM709	Project

23MA	P101	CALC		AND LIN			RA]	T	P	J	s	C I	Year ntrodu	_
			[Non-C	Circuit I	Brancl	nesj	;	3 1	2	0	5	5	202	3
Pream	ble:													
Linear	Algebra	a. The t	opics li	lents to ke Multi Different	variab	le Calcu	llus aı	nd Ap	pl	icati	ons	s, Mult	iple int	egrals
involvi	ng cont	inuous	chang	s the lear es of var			_			-		-	-	
	ering do uisite:			nivariate	e funct	ions and	d mat	rix t1	nec	rv.				
	'		1	e comple	John I	1.00	11	1	-	1	will	be at	ole to	
CO 1			ncept o	of partia vel]	1 deriv	atives t	o eva	luate	tł	ne ex	tre	ma of	two va	ariable
CO 2		/	_	als to fir y of plan						geo	net	crical	shapes	, mass
со з	100	Utilize vector calculus techniques to solve problems related to vector fields in various disciplines. [Apply level]												
						- 0		60				1.0	511	
CO 4	diverg	ence th		techniqu to evalu rel]										
CO 4	diverg surface Use th	ence the ces. [Ap ne Gaus	neorem ply lev ss elimi	to evalu rel] ination r er a mati	nethoorix is o	ector into I to solv liagonal	egrals e give izable	for o	dif ste	feren	t ty	ypes c	f region	ns and
	diverg surface Use th	ence the ces. [Ap ne Gaus	neorem ply lev ss elimi	to evalu rel] ination r er a mati	nethoorix is o	ector into	egrals e give izable	for o	dif ste	feren	t ty	ypes c	f region	ns and
	diverg surface Use th	ence the ces. [Ap ne Gaus	neorem ply lev ss elimi	to evalurel] ination rer a matr	nethoorix is o	ector into d to solv diagonal	egrals e give izable	for o	difi ste	ms o	it ty	ypes o	f region	ns and
CO 5	diverg surface Use the to dete	ence thes. [Ap ne Gaus ermine	neorem oply lev ss elimi whethe	to evalurel] ination rer a matr	nethodrix is d	ector into d to solv diagonal	egrals e give izable	for on sys	difi ste	ms o	it ty	ypes o	f region	ns and
CO 5	diverg surface Use the to dete	ence theses. [Appeared on the content of the conten	neorem oply lev ss elimi whethe	to evalurel] ination rer a matr	methodrix is d	ector into d to solv diagonal	egrals e give izable	for on sys	difi ste	ms o	it ty	ypes o	f region	ns and
CO 5 CO 1	diverg surface Use the to dete	ence theses. [Ap	neorem oply lev ss elimi whethe	to evalurel] ination rer a matr	methodrix is d	ector into d to solv diagonal	egrals e give izable	for on sys	difi ste	ms o	it ty	ypes o	f region	ns and
CO 5 CO 1 CO 2	diverg surface Use the to dete	ence thees. [Ap	neorem oply lev ss elimi whethe	to evalurel] ination rer a matr	method rix is d CO - PO PO5	ector into d to solv diagonal	egrals e give izable	for on sys	difi ste	ms o	it ty	ypes o	f region	PO12
CO 5 CO 1 CO 2 CO 3	diverg surface Use the to determine the dete	ence thees. [Ap	neorem oply lev ss elimi whethe	to evalurel] ination rer a matr	nethodrix is d	ector into d to solv diagonal	egrals e give izable	for on sys	difi ste	ms or lev	it ty	ypes o	f region	PO12
CO 5 CO 1 CO 2 CO 3 CO 4	diverg surface Use the to determine the dete	ence thees. [Appeared] PO2	pply leves seliming whether PO3	to evalurel] ination rer a matr	methodrix is d	to solv liagonal O MAPF	e give izable PING PO7	for on sys	difficient distribution distrib	ms or post of the	of livel]	ypes o	f region	PO12
CO 5 CO 1 CO 2 CO 3 CO 4 CO 5	diverg surface Use the to dete	PO2	PO3 Asses	to evaluate to eva	nethodrix is d	to solv liagonal O MAPF	e give izable PING PO7	n sys	diff	PO	of livel]	pes o	f region	PO12
CO 5 CO 1 CO 2 CO 3 CO 4 CO 5	diverg surface Use the to determine the dete	PO2	PO3 Asses	to evaluate to eva	nethodrix is decorated and the ventage of the venta	to solve diagonal: O MAPF PO6	e give izable PING PO7	n sys	difficient of the state of the	ms or y level PO	of livel	polo Polo End	f region	PO12

Understand	✓		✓		′	✓	
Apply	✓		✓		1	✓	
Analyse				·	1		
Evaluate				•	,		
Create				•	,		
	Assessme	nt Patte	rn for L	ab compo	nent		
Bloom's		Continuous Assessment Tools					
Remember		Class work			Test1		
Remember Understand		* 1	0	1		✓	
Apply	/ X	1PLF			11	✓	
Analyse	12 2			√	201	· /	
Evaluate			·		2/2/2/2	1	
Create	2/ ~		1	√	111	18	
1///	M	ark Distr	ibution	of CIA	11	1//	
	1 1 1	The	ory [L- ′	r]	Practical	[P]	k
Course Structure [L-T-P]	Attendance	Assignment	Test-1	Test-2	Class work	Lab Exam	Total Marks
Mar Tole	5	15	10	10	20	121	60
11-11	To	otal Mark	ks distri	bution	E 1 /	177	7
Total Marks	CIA (Ma	arks)	ESE (Marks)		ESE Duration		
4 1 4 1	60				A control of the		
100	60		33 14	40	1/5	2.5 ho	urs
- N. N. 2	7.1	1-7	n (4	40		2.5 ho	urs
100 End Semester Exam PATTERN	7.1	1-7		40 PART B		//	urs Marks
End Semester Exam	ination [ESE	2 ques modu shoul quest: 2 sub Each	stions w le, out d be ion can division question	PART B ill be given of which 1 answere have a mans. n carries 8 = 40 marks	eximum of	ESE	

SYLLABUS

MODULE I: (Multivariable Calculus and Applications)

(Text 1: Relevant topics from sections 13.3, 13.4, 13.5, 13.8)

Partial derivatives, Partial derivatives of functions of two variables, The partial derivative functions, Partial derivatives viewed as rates of change and slopes, Implicit partial differentiation, Partial derivatives of functions with more than two variables, Higher-order partial derivatives, Equality of mixed partials, Differentiability, Differentials, Local linear approximations, The chain rule, Chain rules for partial derivatives, Other versions of the chain rule, Implicit differentiation, Maxima and minima of functions of two variables - Extrema, Finding relative extrema, The second partials test.

MODULE II: (Multiple integrals and applications)

(Text 1: Relevant topics from sections 14.1, 14.2, 14.3, 14.5, 14.6, 14.8)

Double integrals (Cartesian), Double integrals over nonrectangular regions, Reversing the order of integration, Change of coordinates (Cartesian to polar), Finding area and volume using double integrals, Application of multiple integrals-mass and center of gravity of inhomogeneous laminas using double integral. Triple integrals, volume calculated as triple integral (exclude problems of intersection of solids), and triple integral in cylindrical coordinates.

MODULE III: (Vector Differentiation)

(Text 1: Relevant topics from sections 12.1,12.2,12.6,13.6,15.1,15.2,15.3)

Vector valued functions of single variable, derivative of vector function and geometrical interpretation, motion along a curve –velocity, speed and acceleration. Concept of scalar and vector fields, Gradient and its properties, directional derivative, divergence and curl, Line integrals of vector fields, work as line integral, Conservative vector fields, independence of path and potential function (results without proof).

MODULE IV: (Vector Integration)

(Text 1: Relevant topics from sections 15.4,15.7,15.8)

Green's Theorem (for simply connected domains, without proof) and applications to evaluating line integrals and finding areas. Divergence theorem (without proof) and its applications to flux integrals, Stokes' theorem (without proof) and its applications to finding line integrals of vector fields and work done. Evaluation of Surface integral using Stokes' theorem.

MODULE V: (Linear Algebra)

(Text 2: Relevant topics from sections 7.3, 7.4, 7.5, 8.1,8.3,8.4)

Systems of linear equations, Solution by Gauss elimination, row echelon form and rank of a matrix, fundamental theorem for linear systems (homogeneous and non-

homogeneous, without proof), Eigen values and Eigen vectors, Properties of Eigen values and Eigen vectors, Diagonalization of matrices.

Text books

- 1. H. Anton, I. Biven, S. Davis, "Calculus", Wiley, 10th edition, 2015.
- 2. Erwin Kreyszig, Advanced Engineering Mathematics, 10th edition, John Wiley & Sons, 2016.

Reference books

- 1. J. Stewart, Essential Calculus, Cengage, 2nd edition, 2017
- 2. G.B. Thomas and R.L. Finney, Calculus and Analytic geometry, 9 th Edition, Pearson, Reprint, 2002.
- 3. Peter V. O'Neil, Advanced Engineering Mathematics, Cengage, 7th Edition, 2012
- 4. Veerarajan T., Engineering Mathematics for first year, Tata McGraw-Hill, New Delhi, 2008.
- 5. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36 Edition, 2010.
- 6. Dr. Joydeep Dutta, Calculus of Several Real Variables, IIT Kanpur, [NPTEL], https://nptel.ac.in/courses/111104125 (Relevant sections)
- 7. Prof. Gilbert Strang, Linear Algebra [MITOPENCOURSEWARE] https://ocw.mit.edu/courses/18-06-linear-algebra-spring-2010/ (Relevant sections)

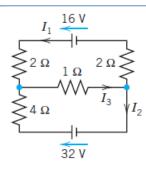
	COURSE CONTENTS AND LECTURE SCHEDULE	
No.	1日 海1月	No. of Hours [45 hours]
	MODULE 1 [9 hours]	
1.1	Partial derivatives, Partial derivatives of functions of two variables	1
1.2	Implicit partial differentiation, Partial derivatives of functions with more than two variables	1
1.3	Higher-order partial derivatives, Equality of mixed partials	1
1.4	Differentials,	1
1.5	Local Linear approximations	1
1.6	Chain rule, Implicit differentiation	1
1.7	Total derivative	1
1.8	Maxima and minima of functions of two variables - Extrema, Finding relative extrema, The second partials test.	1
1.9	Maxima and minima of functions of two variables(continued)	1
	MODULE II [10 hours]	1

2.1	Double integrals (Cartesian)-evaluation	1
2.2	Double integrals(continued)	1
2.3	Change of order of integration in double integrals	1
2.4	change of coordinates (Cartesian to polar)	1
2.5	Finding areas and volumes	1
2.6	Finding areas and volumes(continued)	1
2.7	Mass and center of gravity of plane laminas	1
2.8	Triple integrals,	1
2.9	Volume calculated as triple integral (exclude problems of the intersection of solids)	1
2.10	Triple integral in cylindrical coordinates	1
	MODULE III [9 hours]	U
3.1	Vector valued function of a scalar variable	-1
3.2	Derivative of vector valued function of scalar variable -geometrical meaning	1
3.3	Motion along a curve-speed, velocity, acceleration	1
3.4	Gradient and its properties	1
3.5	Directional derivative	1
3.6	Divergent and curl	1
3.7	Line integrals with respect to arc length, line integrals of vector fields.	1
3.8	Work done as line integraly	1
3.9	Conservative vector field, independence of path, potential function	1
	MODULE IV [9 hours]	
4.1	Green's theorem and its applications	1
4.2	Green's theorem and its applications(continued)	1
4.3	Green's theorem and its applications(continued)	1
4.4	Divergence theorem and applications	1
4.5	Divergence theorem and applications(continued)	1
4.6	Divergence theorem and applications(continued)	1
4.7	Stokes theorem and applications	1

4.9	Stokes theorem and applications(continued)	1
	MODULE V [8 hours]	
5.1	Systems of linear equations, Solution by Gauss elimination	1
5.2	Row echelon form,	1
5.3	finding rank from row echelon form	1
5.4	fundamental theorem for linear systems (homogeneous and non-homogeneous, without proof)	1
5.5	Eigen values and Eigen vectors	1
5.6	Properties of Eigenvalues and Eigenvectors	1
5.7	Diagonalization of matrices	1
5.8	Diagonalization of matrices(continued)	1

LESSON PLAN FOR LAB COMPONENT

No.	Topic	No. of Hours	Experiment
1	Introduction	3	Introduction to MATLAB\SCILAB and general Syntax
2	Visualizing Functions	3	Plotting and visualizing curves and surfaces, Symbolic Computations.
3	Extrema	3	Evaluating Extremum of a single variable function.
	Dationa	3	Evaluating maxima and minima of functions of several variables.
_		3	Understanding integration as an area under the curve.
4	Integration	3	Evaluating area using double integrals.
		3	Evaluating triple integrals.
5	Gradient, Curl and Divergence.	4	Evaluating gradient, curl and divergence.


CO Assessment Questions

- 1. A manufacturer makes two models of an item, standard and deluxe. It costs Rs. 40 to manufacture the standard model and Rs. 60 for the deluxe. A market research firm estimates that if the standard model is priced at rupees x and the deluxe at rupees y, then the manufacturer will sell 500(y x) of the standard items and 45,000 + 500(x 2y) of the deluxe each year. How should the items be priced to maximize the profit?
- 2. Determine the dimension of the rectangular box open at the top, having a volume 32 cubic ft and requiring the least amount of material for its construction.
- 3. The temperature T(x,y,z) at any point (x, y, z) in space is given by $T(x,y,z) = x^2 + y^2 + z^2$. Find the differential dT at a point (a,b,c), and use it to approximate the change in temperature when the coordinates change by small amounts $\delta x, \delta y$, and δz .
- 4. Use a CAS(MATLAB/SCILAB) to generate a contour plot of f(x,y) = 2y2x yx2 + 4xy for $-5 \le x \le 5$ and $-5 \le y \le 5$, and use the plot to approximate the locations of all relative extrema and saddle points in the region. Check your answer using calculus, and identify the relative extrema as relative maxima or minima.
- 5. **Team Work**: Use the method of least squares (refer exercise 13.8 in text 1) to find the values of m and b in the regression line y=mx+b that best fits the data $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$. The team has to make a presentation elaborating the solution and illustrating the method on any data set (using any programming language).
- 1. Consider a thin metal plate that occupies the triangular region R in the xy-plane with vertices at (0, 0), (2, 0), and (0, 3). The temperature on the plate is given by $T(x,y) = x^2 + y^2$, where x and y are the coordinates of a point. Find the average temperature over the region R.
- 2. A water tank has the shape of a hemisphere with a radius of 4 meters. The tank is filled with water up to a height of h meters. Find the total weight of the water in the tank using a double integral, assuming the density of water is constant.
- 3. Find the mass and centre of gravity of a triangular lamina with vertices (0,0), (2,1), (0,3) if the density function is f(x, y) = x + y.
- 4. Use a CAS(MATLAB/SCILAB) to approximate the intersections of the curves $y = \sin x$ and y = x/2, and then approximate the volume of the solid in the first octant that is below the surface $z = \sqrt{1 + x + y}$ and above the region in the xy-plane that is enclosed by the curves.
- 5. **Team Work**: The following initial steps can be used to express a triple integral over a solid G as an iterated triple integral: First project G onto one of the coordinate planes to obtain a region R, and then project R onto one of the coordinate axes. Describe how you would use these steps to find the limits of integration. Illustrate your discussion with an example using any software. The team has to make a presentation elaborating the procedure.

1

2

3	 A heat-seeking particle is located at the point (2, 3) on a flat metal plate whose temperature at a point (x, y) is T (x, y) = 10 - 8x² - 2y². Find an equation for the trajectory of the particle if it moves continuously in the direction of maximum temperature increase. A vector field F(x, y, z) = (y, x, 2z) represents the velocity of a fluid flow in three-dimensional space. Determine the divergence and curl of F, and interpret the physical meaning of these vector operations. A vector field F(x,y,z) = (x²,xy,yz) represents a force field in three-dimensional space. Show that F is conservative and find a potential function for F. Also, evaluate the work done by F along a curve C from point A(1,2,0) to point B(3,1,4). Visualize any five vector fields relevant to your domain using CAS(MATLAB/SCILAB). Team Work: Suppose that C is a circle in the domain of a conservative nonzero vector field in the xy-plane whose component functions are continuous. Explain why there must be at least two points on C at which the vector field is normal to the circle. Also, illustrate using figures drawn in any software. Does the result remain true if the circle C is replaced by a square? Explain. The team has to make a presentation elaborating the solution.
4	 Suppose we have a region R in the xy-plane bounded by a simple closed curve C. The temperature distribution in this region is given by the function T(x,y) = 2x² - 3y². Calculate the total heat flux across the boundary curve C using Green's theorem. Find the outward flux of the vector field F(x,y,z) = zk across the sphere x² + y² + z² = a² using divergence theorem. Calculate the work done by force field F(x,y,z) = 2xi + 3yj + 4zk where C is the curve defined by the ellipse x²/9 + y²/4 = 1 in the counterclockwise direction using Stokes' Theorem. Use a CAS(MATLAB/SCILAB) to verify Green's Theorem for the function F = e^yi + ye^xj were (a) C is the circle x² + y² = 1 (b) C is the boundary of the region enclosed by y = x² and x = y². Team Work: Explain with graphics how a rolling planimeter is used to calculate the area of a region. Describe the relationship between these devices and Green's Theorem. Illustrate an example. The team has to make a presentation elaborating the solution.
5	1. Using Kirchhoff's laws and showing the details, find the currents:

- 2. Find the growth rate in the Leslie model (see Example 3. Sec8.2 Text2) with the matrix as given $\begin{bmatrix} 0 & 3.45 & 0.60 \\ 0.9 & 0 & 0 \\ 0 & 0.45 & 0 \end{bmatrix}.$
- 3. A system is represented by the state equation

$$\begin{bmatrix} \frac{dx_1}{dt} \\ \frac{dx_2}{dt} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -4 & -5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u.$$
 Show that it is controllable.

- 4. In circuit theory a set of linear equations with electrical components such as resistance inductance capacitors current voltage etc. Identify a problem solved using matrix algebra and solve it using CAS(MATLAB/SCILAB).
- 5. **Team Work**: Identify five application-oriented problems from your domain and its solution. Give a PPT illustrating the relevance of the problem.

23CYP1	ENGINEERING CHEMISTRY	L	T	P	J	s	C	Year of Introduction
230171	(Non-circuit Branches)	2	1	2	0	4	4	2023

Preamble: Enable the students to build a solid foundation in fundamentals of chemistry, to correlate theoretical concepts with their industrial/engineering applications and to get hands-on laboratory experience on the principles discussed in theory sessions. The course imparts knowledge on various important topics like atomic and molecular structure, electrochemistry, organic reactions, etc., as they apply to the field of engineering and to familiarize the students with different application-oriented topics like spectroscopy, water chemistry, etc. It helps the learners to prepare them for advanced concepts in chemistry and to do interdisciplinary research.

-		, water hemist				-		_	orepare	e them	tor adv	anced
Prereq	uisite	Highe	r secon	dary cl	nemistr	у.		41	1	7		
Course	Outc	omes:	After th	e comp	oletion	of the o	course	the stu	dent w	ill be al	ole to	
CO1		Illustrate molecular orbital energy level diagram of diatomic molecules [Understand level]										
CO2		Identify the suitable spectroscopy technique for the characterization of engineering materials and interpret spectral data [Apply level]										
соз	ene	Design electrochemical cells, compare the working of different electrochemical energy storage devices and describe corrosion control methods [Understand level]										
CO4							_			identify ules [Ap		
CO5	700	estigate tment j	2. 2.	A COLUMN	_		neters	and de	scribe	differen	t watei	
C06		rpret n yout q								esize m	aterials	s and
		- 3	1	X,	CO - I	PO MA	PPING	11	/			
СО	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	P09	PO10	PO11	PO12
CO 1	✓				-				-0.			✓
CO 2	✓	✓			✓				✓	✓		✓
со з	✓	✓							✓	✓		✓
CO 4	✓	✓										✓
CO 5	✓	✓					✓		✓	✓		✓
CO 6	✓	✓			✓			✓	✓	✓		✓

	Assessme	ent Patte	rn for T	neory com	ponent			
Plaam's Catagory	Co	ntinuou	s Assess	ment Too	ols	End Ser	nester	
Bloom's Category	Те	Test1		Test 2 Other tool		Examir		
Remember	✓	,	✓		/	✓		
Understand	✓	,	✓	→	/	✓		
Apply	✓	,	✓	·	,	✓		
Analyse				→	,			
Evaluate	-							
Create		VA	R C	017				
-/	Assessr	nent Pat	tern for	Lab comp	onent	1		
ni de	3		1.7	Continu	ous Asse	ssment To	ools	
Bloom's	Category	~	_	Class worl	k	Test	1	
Remember	1/	(N)	+1	4,10	1/3			
Understand				✓) · /	\ - \ \	1	
Apply			2 3	✓	01	1		
Analyse	- 11	1 ×	19	✓	1.17	✓		
Evaluate		W 1 153	1. 1. 10.	VA		17		
Create		11 1 91	11.14	✓		1.50	11	
	7	Mark Dist	tribution	of CIA	-	150	ш	
1	1	Tl	heory [L-	TI	Pract	ical [P]		
Course Structure [L-T-P-J]	Attendance	Assignment	Test-1	Test-2	Class work	Lab Exam	Total Marks	
	5	10	10	10	15	10	60	
- 2	1	Total Ma	ırks dist	ribution	1			
Total Marks	CIA	(Marks)	O I I	ESE (Mark	rs)	ESE Du	ration	
100		60		40		2.5	h	
	End Sem	ester Ex	aminatio	on [ESE]: I	Pattern			
PATTERN F	PART A			PART B		ESE	Marks	
PATTERN 2		modul	e, out	ll be giver of which wered. Ea	1 quest	ion	40	

	can have a maximum of 2 sub divisions.	
	Each question carries 8 marks.	
	Marks: (5x 8 = 40 marks)	
	Time: 2.5 hours	
Total Marks: 0	Total Marks: [5x8 = 40 marks]	

SYLLABUS

MODULE I: Atomic and Molecular Structure

Atomic and molecular orbitals - Postulates of molecular orbital theory - Linear Combination of Atomic Orbitals (LCAO) - Molecular orbitals of diatomic molecules - Molecular orbital energy level diagrams of N_2 and O_2 - Metallic bonding - Limitations of Valence Bond Theory (VBT) - Introduction to Crystal Field Theory (CFT) – Band structure of solids and the role of doping on band structures.

MODULE II: Spectroscopic Techniques and Applications

Introduction to spectroscopy - Beer Lambert's law (Numericals)- UV-vis spectroscopy (introduction, various electronic transitions and applications)-Vibrational spectroscopy (introduction, Number of vibrational modes of CO₂ and H₂O, applications) - Surface characterization techniques: introduction and applications of X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) - Diffraction: introduction and applications of X-Ray Diffraction (XRD)

MODULE III: Electrochemistry and Corrosion

Introduction - Differences between electrolytic and electrochemical cells - Daniel cell - Redox reactions - Cell representation - Construction and working of Calomel electrode - Electrochemical series and its applications - Nernst Equation (Derivation not required) - Single electrode and cell (Numerical) - Applications - Primary cells and secondary cells with examples - Construction and working of Lithium-ion cell - Introduction to fuel cell - Mechanism of electrochemical corrosion - Galvanic series - Cathodic protection.

MODULE IV: Stereochemistry and Organic Reactions

Representations of three-dimensional (3D) structures of organic molecule - Structural isomerism - Stereoisomerism - Optical activity - Introduction to reactions involving substitution, addition, elimination, oxidation, reduction, cyclization and ring openings

MODULE V: Water Chemistry

Water characteristics - pH - Methods of estimation, significance - Acidity and alkalinity- titrimetric analysis - Normality equation (Numerical). Hardness - Types of hardness- Temporary and Permanent - Disadvantages of hard water -Units of hardness- ppm and mg/L -Degree of hardness (Numerical) - Estimation of hardness-EDTA method (Numerical). Water softening methods-Ion exchange process-Principle, procedure and advantages. Estimation of chloride (Argentometric titration). Reverse osmosis - principle, process and advantages. Disinfection methods - chlorination, ozonation and UV irradiation. Dissolved oxygen (DO) -Estimation (Winkler's methodonly brief procedure), BOD and COD definition, estimation (only brief procedure) and significance (Numericals).

Text books

- 1. AICTE's Prescribed Textbook: Chemistry I with Lab Manual, Khanna Book Publishing.
- 2. Engineering Chemistry, by Manisha Agrawal.
- 3. University chemistry, by B. H. Mahan.
- 4. Chemistry: Principles and Applications, by M. J. Sienko and R. A. Plane.
- 5. Fundamentals of Molecular Spectroscopy, by C. N. Banwell.
- 6. Engineering Chemistry (NPTEL Web-book), by B. L. Tembe, Kamaluddin and M. S. Krishnan.
- 7. Physical Chemistry, by P. W. Atkins.
- 8. A Textbook of Engineering Chemistry, Shashi Chawla
- 9. Organic Chemistry: Structure and Function by K. P. C. Volhardt and N. E. Schore, 5th Edition

Reference books

- 1. Muhammed Arif, Annette Fernandez, Kavitha P. Nair, Engineering Chemistry, Owl Books, 2019.
- 2. Ahad J., Engineering Chemistry, Jai Publication, 2019.
- 3. Roy K. Varghese, Engineering Chemistry, Crownplus Publishers, 2019.
- 4. Soney C. George & Rino Laly Jose, Text Book of Engineering Chemistry, S. Chand & Company Pvt Ltd, 2019.
- 5. Jain and Jain, Engineering Chemistry, DhanpatRai Publishers, 17th Edition, 2018.
- 6. Wiley India, Engineering Chemistry, ISBN 9788126543205

COURSE CONTENTS AND LECTURE SCHEDULE					
No.		No. of Hours			
	MODULE 1				
1.1	Atomic and molecular orbitals - Postulates of molecular orbital theory	1			
1.2	Linear Combination of Atomic Orbitals (LCAO)	1			
1.3	Molecular orbitals of diatomic molecules- Molecular orbital energy level diagrams of $\ensuremath{\mathrm{N}}_2$	1			

1.4	Molecular orbital energy level diagrams of O ₂	1
1.5	Metallic bonding - Limitations of Valence Bond Theory (VBT)	1
1.6	Introduction to Crystal Field Theory (CFT)	1
1.7	Band structure of solids	1
1.8	Role of doping on band structures	1
	MODULE II	
2.1	Introduction to spectroscopy	1
2.2	Beer Lambert's law (Numericals), UV-vis spectroscopy -introduction	1
2.3	Various electronic transitions – applications	1
2.4	Vibrational spectroscopy - introduction	1
2.5	Number of vibrational modes of CO ₂ and H ₂ O - applications	1
2.6	Surface characterization techniques: introduction and applications of X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES)	1
2.7	Diffraction: introduction and applications of X-Ray Diffraction (XRD)	1
	MODULE III	
3.1	Introduction - Differences between electrolytic and electrochemical cells - Daniel cell - Redox reactions	1
3.2	Cell representation - Construction and working of Calomel electrode	1
3.3	Electrochemical series and its applications	1
3.4	Nernst Equation (derivation not required) - Single electrode and cell (Numericals) – Applications	1
3.5	Primary cells and secondary cells with examples - Construction and working of Lithium-ion cell	1
3.6	Introduction to fuel cell - Mechanism of electrochemical corrosion	1
3.7	Galvanic series - cathodic protection.	1
	MODULE IV	
4.1	Representations of three-dimensional structures of organic molecule	1
4.2	Structural isomerism	1
4.3	Stereoisomerism	1

4.5	Introduction to reactions involving substitution, addition	1
4.6	Introduction to reactions involving elimination, oxidation	1
4.7	Introduction to reactions involving reduction, cyclization and ring openings	1
	MODULE V	
5.1	Water characteristics - pH – Methods of estimation, significance	1
5.2	Acidity and alkalinity– Titrimetric analysis – Normality equation (numericals).	1
5.3	Hardness - Types of hardness- Temporary and Permanent - Disadvantages of hard water -Units of hardness- ppm and mg/L - Degree of hardness (Numericals)	1
5.4	Estimation of hardness-EDTA method (Numericals)	1
5.5	Water softening methods-Ion exchange process-Principle, procedure and advantages. Estimation of chlorides (Argentometric titration)	1
5.6	Reverse osmosis – principle, process and advantages -Disinfection methods - chlorination, ozonation and UV irradiation.	1
5.7	Dissolved oxygen (DO) -Estimation (Winkler's method - only brief procedure-), BOD and COD definition, estimation (only brief procedure) and significance (Numericals).	1

LESSON PLAN FOR LAB COMPONENT (Any 7 experiments to be conducted)

No.	Topic	No. of Hours	Experiment
	1/1/3	1	Experiment 1: Estimation of iron from iron ore/alloy
			Experiment 2: Determination of cell constant and conductivity of solutions
1	Electrochemistry	10	Experiment 3: Potentiometric redox titration
			Experiment 4: Calibration of pH meter and determination of pH of solutions
			Experiment 5: Determination of pKa of weak acid using pH meter

2	Spectroscopy	4	Experiment 6: Analysis of IR spectra (minimum 3 spectra) Experiment 7: Analysis of XPS, AES, XRD spectra (minimum 3 spectra)
3	Polymer and nanomaterial	8	Experiment 8: Synthesis of urea-formaldehyde Experiment 9: Synthesis of polyaniline Experiment 10: Synthesis of silver nanoparticles using chemical reduction method Experiment 11: Biogenic Synthesis of Silver Nanoparticles using plant extract
4	Water Chemistry	6	Experiment 12: Estimation of hardness of water by EDTA method Experiment 13: Determination of chloride content of water. Experiment 14: Determination of total acidity and total alkalinity of water sample
5	Others	8	Experiment 15: Estimation of copper in brass Experiment 16: Identification of components in a mixture using TLC Experiment 17: Chemical analysis of a salt. Experiment 18: Chemical oscillations- Iodine clock reaction.
	1121	Vii.	

	CO Assessment Questions
1	Illustrate why the molecular orbital energy level diagram for O_2 is different from N_2
2	 a) Choose a molecule. Find its IR spectrum from the web using any one of the following sources (i) AIST: Spectral Database for Organic Compounds (SDBS), https://sdbs.db.aist.go.jp/sdbs/cgi-bin/cre_index.cgi (ii) NIST chemistry webbook, https://webbook.nist.gov/chemistry/ (iii) Sigma Aldrich, https://www.sigmaaldrich.com/IN/en (iv) KnowItAll, https://www.knowitallanyware.com/#search. Interpret the spectrum in your own words highlighting how you can elucidate the structure of the molecule of your choice from the spectrum. b) Compare XPS and AES techniques and identify when each testing method is used.

	a) Write the cell reactions of the following cell. Cd/CdSO ₄ (0.01)//								
	CuSO ₄ (0.5M)/Cu. Sketch the electrochemical cell.								
3	b) Prepare a presentation on the topic "Energy storage devices; past, pre								
	and future"								
	c) Write a report on the topic "Corrosion Control in Industry"								
	a) Select an organic molecule and draw its sawhorse projection. Illustrate the								
	interconversion of sawhorse projection to Fisher projection via Newman								
4	projection								
	Illustrate the possible isomers (both structural and stereo) for the molecular								
	formula C_xH_yO (e.g., $C_4H_{10}O$).								
	a) Prepare a table containing various water quality parameters and explain								
	how you can implement them to improve the quality of your local water								
5	source.								
	b) Prepare a report on disinfection methods most commonly used in drinking								
	water supply systems in the USA.								
	a) Estimate the amount of iron from iron ore using volumetric and								
	potentiometric titrations, compare the results and identify which								
6	technique is more accurate.								
	b) Collect water from three different sources. Measure their conductivity and								
	pH and interpret the results.								

23EST104	FUNDAMENTALS OF ELECTRICAL ENGINEERING	L	1	P	J	S	(Year of Introducti on
		3	C	0	0	3	3	2023

Preamble:

To provide the students with fundamental knowledge in the field of Electrical Engineering. This course will enable the students to analyze electrical and magnetic circuits. The students will be able to choose appropriate electric machines for various applications.

Prerequ	uisite: Nil
Course	Outcomes: After the completion of the course the student will be able to
CO 1	Solve DC electrical circuits using Circuit laws. (Apply level)
CO 2	Solve simple magnetic circuits (Apply level)
CO 3	Analyze simple A.C. electrical circuits (Analyse level)
CO 4	Identify the benefits of three-phase systems for industrial electrical applications (Understand level)
CO 5	Explain the principle of operation of electrical machines (Understand level)

CO - PO MAPPING

СО	P	P	PO	PO	P	P06	PO	PO8	PO	PO10 P	011 PO
	0	0	3	4	0	- 113	7	7,000	9	1579	12
- 13	12	2	W.	Fil.	5	- 133		100	8	1841	/
CO 1	V	/	1	W			1/4	4		(3)	
CO 2	✓	X	1		-	-4			63	7//	
CO 3	✓	✓	1	1	-	✓		✓	✓	✓	
CO 4	✓	✓	1			✓		ON	1		
CO 5	✓	✓		1	-		√	-			

Assessment Pattern

	Continuo	us Assess	ment Tools	End Semester
Bloom's Category	Test1	Tes t 2	Other tools	Examination
Remember	✓	✓	✓	✓

Understand	✓	✓	✓	✓
Apply	✓	✓	✓	✓
Analyse			✓	
Evaluate			✓	
Create			✓	

Mark Distribution of CIA

	Attenda	Tl	neory [L- T]		
	nce	Assignment	Test-1	Test-2	Total Mark
Course Structure [L-T-P-J]	N. Land		4.E.C	115	S
3-0-0-0	5	15	10	10	40

Total Mark distribution

Total Marks	CIA (Marks)	ESE (Marks)	ESE Duration
100	40	60	3 hours

End Semester Examination [ESE]: Pattern

PATTERN	PART A	PART B	ESE Marks
PATTERN 1	10 Questions, each question carries 2 marks Marks: (2x10 = 20 marks)	2 questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 2 sub divisions. Each question carries 8 marks.	60
		Marks: (5x8 = 40 marks) Time: 3 hours	
	Total Marks: 20	Total Marks: [5x8 = 40 marks]	2/

SYLLABUS

MODULE I: Introduction to electrical and magnetic circuits

Introduction: Importance of Electrical Engineering in day-to-day life, types of Electrical elements, Ideal and practical Sources, Source Conversion.

D. C. Circuits: Ohm's Law and Kirchhoff's Laws; Loop current and Nodal voltage method; Steady state analysis with independent sources; Power and energy; Star-Delta conversion (Analysis of resistive networks only).

Magnetic circuits: MMF, field strength, flux density, reluctance, energy stored in magnetic circuits, Simple problems in series magnetic circuits

Electromagnetism: Faradays Laws, Lenz's Law, Fleming's Rules, Statically and dynamically induced EMF; Concepts of self-inductance, mutual inductance and coefficient of coupling

MODULE II: Single Phase AC Circuits

Single Phase system: Generation of sinusoidal voltage.

Series Circuits: Common signals and waveforms (Sine, Square, Triangle), RMS and Average value, form factor and peak factor of AC waveforms, Impedance of series circuits (RL, RC and RLC circuits). Phasor diagram of series circuits; Real, reactive and apparent power, power factor, Power triangle.

Parallel Circuits: Admittance method, Phasor diagram. Power, Power factor. Power triangle

Resonance: Series and Parallel Resonance curve, Q-factor.

MODULE III: Introduction to Power Systems

Three Phase System:

Generation of three phase voltages- advantages of three phase systems, star and delta connection, three wire and four wire systems, relation between line and phase voltages, line and phase currents. Expressions for power in three phase circuits; definition of phase sequence, balanced supply and balanced load; Relationship between line and phase values of balanced star and delta connections; Power in balanced three phase circuits. Numerical Problems.

Power transmission and distribution: Typical electrical power transmission scheme, need for high voltage transmission, substation equipment, primary and secondary transmission and distribution systems.

MODULE IV: DC Machines and Transformers

DC Machines: Working principle of DC generator; Types and constructional features; EMF equation of generator, Voltage equations and effects of armature reaction; working principle of DC motor; Significance of Back EMF, torque equation; Types of D.C. motors, characteristics (series and Shunt motors only) and applications; Necessity of a starter for DC motor;

Transformer: Principle of operation and construction of single-phase transformers (core and shell types), emf equation, losses, efficiency, and voltage regulation

MODULE V: AC Machines and Renewable Power

Three Phase Synchronous Generators: Principle of operation; Types and constructional features; EMF equation

Three Phase Induction Motors: Concept of rotating magnetic field; Principle of operation, types and constructional features; Slip and its significance; Applications of squirrel cage and slip ring motors; Necessity of a starter, star-delta starter.

Renewable Power Generation:

Introduction to Wind, Solar, Fuel cell, Tidal and Geo thermal; Concept of cogeneration, and distributed generation.

Text books

- 1. Hughes, Electrical Technology, Pearson, 10th Edition, 2011.
- 2. Fitzgerald and Higginbotham, Basic Electrical Engineering, McGraw Hill Inc, 1981.
- 3. D.P. Kothari and I.J. Nagrath, Basic Electrical Engineering, 3rd Edition, TMH, 2009
- 4. Basic Electrical Engineering, D. C. Kulshreshtha, McGraw-Hill Education, Revised first edition, 2019

Reference books

- 1. W. H. Hayt, Jr J. E. Kemmerly and S. M. Durbin, Engineering Circuit Analysis, 7th Edn TMH, 2010.
- 2. Electrical Engineering Fundamental, Vincent Del Toro, Prentice Hall, New Delhi.
- 3. Fundamentals of Electrical Engineering and Electronics, B.L. Theraja, S Chand and Company, Reprint Edition 2013.
- 4. Principles Electrical Engineering and Electronics, V.K Mehata, Rohit Mehta, S Chand and Company, 2nd edition, 2015.
- 5. M.S.Sukhija and T.K.Nagsarkar, Basic Electrical and Electronics Engineering, Oxford University Press, 2012.
- 6. S. B. Lal Seksena and Kaustuv Dasgupta, "Fundamentals of Electrical Engineering", Cambridge University Press.
- 7. NPTEL course on Basic Electrical Technology, Prof. G. D. Roy, IIT Kharagpur.

COURSE CONTENTS AND LECTURE SCHEDULE

No.		No. of Hours
	MODULE 1 (8 Hrs)	I
1.1	Importance of Electrical Engineering in day-to-day life, types of Electrical elements, Ideal and practical Sources, Source Conversion (Concepts)	1
1.2	Ohm's Law and Kirchhoff's Laws; Loop current method	1
1.3	Nodal voltage method	1
1.4	Steady state analysis with independent sources; Power and energy; Star-Delta conversion (Analysis of resistive networks only)	1
1.5	Numerical problems on topic 1.4	1

1.6	MMF, field strength, flux density, reluctance, energy stored in magnetic circuits, Simple problems in series magnetic circuits	1						
1.7	Faradays Laws, Lenz's Law, Fleming's Rules, Statically and dynamically induced EMF;	1						
1.8	1.8 Concepts of self-inductance, mutual inductance and coefficient of coupling							
	MODULE II (7 Hrs)							
2.1	Single Phase system: Generation of sinusoidal voltage	1						
2.2	Series Circuits: Common signals and waveforms (Sine, Square, Triangle), RMS and Average value, form factor and peak factor of AC waveforms,	1						
2.3	Numerical Problems on topic 2.2	1						
2.4	Impedance of series circuits (RL, RC and RLC circuits). Phasor diagram of series circuits; Real, reactive and apparent power, power factor, Power triangle,	1						
2.5	Numerical Problems on topic 2.4	1						
2.6	Parallel Circuits: Admittance method, Phasor diagram. Power, Power factor. Power triangle	1						
2.7	Resonance: Series and Parallel Resonance curve, Q–factor. Power in balanced three phase circuits- Numerical Problems	1						
	MODULE III (6 hrs)							
3.1	Three Phase System: Generation of three phase voltages- advantages of three phase systems, star and delta connection, three wire and four wire systems.	1						
3.2	Relation between line and phase voltages, line and phase currents. Expressions for power in three phase circuits;	1						
3.3	Definition of phase sequence, balanced supply and balanced load; Relationship between line and phase values of balanced star and delta connections;	1						
3.4	Power in balanced three phase circuits- Numerical Problems.	1						
3.5	Power transmission and distribution: Typical electrical power transmission scheme, need for high voltage transmission,	1						

3.6	Substation equipments, primary and secondary transmission and distribution systems.	1
	MODULE IV (8hrs)	
4.1	Working principle of DC generator; Types and constructional features;	1
4.2	EMF equation of generator, Voltage equations and effects of armature reaction;	1
4.3	Working principle of DC motor; Significance of Back EMF, torque equation;	1
4.4	Types of D.C. motors, characteristics (series and Shunt motors only)	1
4.5	Application of DC Motors; Necessity of a starter for DC motor.	1
4.6	Principle of operation and construction of single-phase transformers (core and shell types)	1
4.7	Emf equation, losses.	1
4.8	Efficiency, and voltage regulation	1
	MODULE V (7hrs)	1
5.1	Three Phase Synchronous Generators: Principle of operation; Types and constructional features; EMF equation	1
5.2	Constructional features; EMF equation	1
5.3	Three Phase Induction Motors: Concept of rotating magnetic field; Principle of operation,	1
5.4	Types and constructional features; Slip and its significance;	1
0.1		
5.5	Applications of squirrel cage and slip ring motors; Necessity of a starter, star-delta starter.	1
5.6	Introduction to Wind, Solar, Fuel cell, Tidal and Geothermal;	1
5.7	Concept of cogeneration, and distributed generation;	1

	CO Assessment Questions
	Find the equivalent resistance between A and B for the network shown below
CO 1	A 2Ω 3Ω 4Ω 6Ω 7Ω 6Ω (Apply)
	Compare the power consumed in star and Delta circuits using the same
CO 1	resistances as branches.
CO 2	An Iron ring of cross-sectional area 1.1 cm ² is wound with a coil of 3000 turns. Calculate the magnetizing current required to produce a flux of 0.2 mWb in the iron path if mean length of the path is 32 cm and relative permeability of iron is 2500. Neglect magnetic leakage and fringing.
CO 2	How is transformer behaving as a magnetic isolator?
CO 3	A sinusoidal voltage V= $240 \angle 15^{0}$ of frequency 50Hz is applied to a series RL circuit consisting of R = 10Ω and L = 0.25 H. Calculate (i) rms current and its phase angle (ii) power factor (iii) average power (iv) reactive power and (v) apparent power drawn by the circuit.
CO 3	Submit a report on, case study of an AC circuit application
CO 3	Circuit De-bugging competition
CO 4	Derive the emf equation of a transformer
CO 5	Justify the necessity of starters in three phase induction motor

23ESP108/ 23ESP208		L	T	P	J	s	С	Year of Introduction
	ENGINEERING GRAPHICS	3	0	2	o	5	4	2023

Preamble: Practicing Engineers require conversion of ideas and design into new products or in interpreting information from existing drawings. The course in Engineering Graphics deals with conics, orthographic / pictorial projections, dimensioning and specifications, sectional views, isometric projection, development of surfaces and use of AutoCAD software in preparing drawings. It enables the students to acquire basic knowledge about Engineering drawing and prepare themselves for a career in Engineering.

Engin	eering d	lrawing	and p	repare 1	themse	elves for	a care	eer in E	nginee	ring.		
Prere	quisite:	Nil		-			_					
Cours	e Outco	omes: A	After th	e comp	letion	of the c	ourse	the stu	dent w	ill be at	ole to	
CO1	Constr	Construct plain, diagonal and vernier scales.										
CO2	Construct conic sections and engineering curves.											
соз	Prepare multi-view orthographic projections of regular solids by visualizing them in different positions.											
CO4	Draw s	Draw sectional views and develop surfaces of regular geometric solids.										
CO5	-			_	_	_	-	of isom	-			
CO6	Obtain tools.	multi-	view p	rojectio	ons, se	ctions	and so	olid mo	dels of	object	s usinį	g CAD
	1	7		1	CO - I	PO MAI	PPING	小篇	E	10	7/1	
СО	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12
CO 1	✓	1	2	MI		100	ASC		1	3	1	
CO 2	✓	11	D	1	-	314			65	1/1		
со з	√		1	1	-			1. 2	1			
CO 4	√		1		0	UII	0	M				
CO 5	√			1				and the same		✓		✓
CO 6	√				✓					✓		√
	1		Asses	sment	Patter	n for 1	heory	compo	nent	1		1
D1.		\040 <i>w</i>		Con	tinuo	us Asse	essme	nt Too	ls	End	Seme	ster
BIG	oom's C	ategoi	y	Test 1 Test 2		2	Other tools		End Semester Examination			
Reme	mber			✓	✓ ✓			✓		√		
								-				

Understand

Assess	sment]	Pattern fo		✓ ✓		
	sment]	Pattern f				
	sment l	Pattern fo		√		
	sment l	Pattern f		•		
's Categor			or Lab comp	onent		
	v				essment To	
			Class wo	rk	Test	:1
	_		✓		✓	
		-	✓ -		√	
1	5 V	D.H.	- /		✓	
1/50	3-	-	✓	5		
1,69	-		✓	S. (3)	11/1	
\U/	Mark	Distribu	tion of CIA	710	111	
8/1	100	Theory	[L- T]	Pract	tical [P]	
Attendance	Assignment	Test-1	Test-2	Class work	Lab Exam	Total Marks
5	15	10	10	10	10	60
1	Total	Marks d	istribution		12	
CI	A (Mark	s)	ESE (Mar	ks)	ESE Du	ration
1 10	60	110	40	300	2.5 ł	ırs
amination	[ESE]: 1	Pattern	118	3/	0/1	
PART A		-37	PART B	165	ESE	Marks
		each mod question Each qu maximum Each que Marks: (5	dule, out o should be lestion can of 2 sub division carries x 8 = 40 mar	f which answered have visions.	1 1. a	40
	5 CI	Total CIA (Mark 60 amination [ESE]: 1	Theory Theory Theory Total Marks di CIA (Marks) 60 Amination [ESE]: Pattern PART A 2 question each mod question Each que	Mark Distribution of CIA Theory [L- T] Total Marks distribution CIA (Marks) ESE (Mar 60 Amination [ESE]: Pattern PART A PART B 2 questions will be each module, out o question should be Each question cammaximum of 2 sub diversity Each question carries Marks: (5x 8 = 40 mar Time: 2.5 hours	Mark Distribution of CIA Theory [L-T] Pract Theory [L-T] Pract Theory [L-T] Pract Total Marks distribution CIA (Marks) ESE (Marks) 60 40 Amination [ESE]: Pattern PART A PART B 2 questions will be given from each module, out of which question should be answered Each question can have maximum of 2 sub divisions. Each question carries 8 marks. Marks: (5x 8 = 40 marks) Time: 2.5 hours	Mark Distribution of CIA Theory [L-T] Practical [P] Tutal Marks distribution CIA (Marks) ESE (Marks) ESE Dure amination [ESE]: Pattern PART A PART B 2 questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 2 sub divisions. Each question carries 8 marks. Marks: (5x 8 = 40 marks) Time: 2.5 hours

SYLLABUS

Part A

MODULE I: Introduction to Engineering Drawing

Principles of Engineering Graphics and their significance, usage of Drawing instruments, lettering, Dimensioning, Conic sections – ellipse, parabola, hyperbola (eccentricity method and rectangle method only); Cycloid, Involute, helix (basic curves only); Scales – Plain, Diagonal and Vernier Scales (simple problems only).

MODULE II: Orthographic Projections

Principles of Orthographic Projections-Conventions - Projections of Points and projection of lines parallel to/inclined to both reference planes. Traces of lines.

MODULE III: Projections of Regular Solids

Projection of solids-Prisms, pyramids, solids of revolution-cone, cylinder. Solids with axis parallel to/inclined to both the reference Planes- Auxiliary Views.

MODULE IV: Sections and Sectional Views of Right Angular Solids, Development of Surfaces

Draw the sectional orthographic views of geometrical solids- Prism, Cylinder, Pyramid, Cone. Development of surfaces of Right Regular Solids - Prism, Pyramid, Cylinder and Cone.

MODULE V: Isometric Projections

Principles of Isometric projection – Isometric Scale, Isometric Views, Conventions; Isometric Views of lines, Planes, Simple and compound Solids; Conversion of Isometric Views to Orthographic Views and isometric views to orthographic views.

Part B

AutoCAD (Internal Evaluation only)

Demonstrating knowledge of AutoCAD software [such as: The Menu System, Toolbars (Standard, Object Properties, Draw, Modify and Dimension), Prepare CAD drawing of objects.

Text books

- 1. P. I. Varghese, Engineering Graphics, Tata McGraw Hill Education
- 2. Prof. J Benjamin, Engineering Graphics, Pentex Publishers

Reference books

- 1. N. D. Bhatt, Engineering Drawing, Charotar Publishing House
- 2. https://nptel.ac.in/courses/112/103/112103019 (MOOC Course)

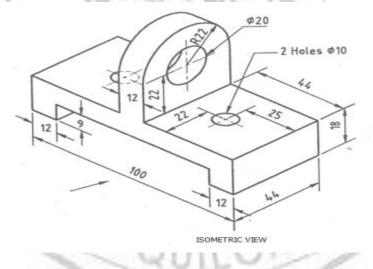
COURSE CONTENTS AND LECTURE SCHEDULE

No.		No. of Hours
	MODULE 1	
1.1	Principles of Engineering Graphics and their significance, usage of Drawing instruments, Types of lines and their uses.	1
1.2	Types, system of dimensioning and lettering practice.	1
1.3	Conic section– ellipse (eccentricity method)	1
1.4	Conic section– ellipse (rectangle method)	1
1.5	Conic section- parabola (eccentricity method)	1
1.6	Conic section- parabola (rectangle method only)	1
1.7	Conic section -hyperbola (eccentricity method and rectangle method only)	1
1.8	Construction of Cycloid (basic curve only)	1
1.9	Involute (simple case only)	1
1.10	Helix (simple case only)	1
1.11	Introduction to Scales, Scales – Plain Scale, Diagonal and Vernier Scales (simple problems only)	1
1.12	Plain Scale (simple problems only)	1
1.13	Diagonal Scales (simple problems only)	1
1.14	Vernier Scales (simple problems only)	1
	MODULE II	
2.1	Principles of Orthographic Projections-Conventions - Projections of Points	1
2.2	Projections of Points (Problems on projection of points)	1
2.3	Projection of lines parallel to/inclined to one reference plane.	1
2.4	Problems on lines inclined to one plane and parallel to other.	1
2.5	Problems on lines inclined to one plane and parallel to other.	1
2.6	Projection of lines inclined to both reference planes. Line rotation method	1
2.7	Problem on lines inclined to both planes	1
2.8	Problem on lines inclined to both planes when apparent lengths are given.	1

2.9	Traces of lines using line rotation.	1		
2.10	Projection of lines-Plane rotation method	1		
2.11	Problems on Lines using plane rotation method			
2.12	Traces of lines using plane rotation.	1		
2.13	Problems on Lines when traces are given.	1		
	MODULE III			
3.1	Projection of solids- Prisms, pyramids - simple position	1		
3.2	Projection of solids- Cylinder, cone - simple position	1		
3.3	Projection of solids-Prisms inclined to one plane.	1		
3.4	Projection of solids-Pyramids inclined to one plane.	1		
3.5	Projection of solids-Cylinders inclined to one plane.	1		
3.6	Projection of solids-Cone inclined to one plane.	1		
3.7	Projection of solids-Prisms inclined to both the reference Planes	1		
3.8	Projection of solids-Pyramids inclined to both the reference Planes	1		
3.9	Projection of solids-Cone inclined to both the reference Planes	1		
3.10	Projection of solids-Cylinders inclined to both the reference Planes	1		
3.11	Problems on projection of solids inclined to both planes.	1		
3.12	Problems on projection of solids inclined to HP with solid resting on VP in simple position.	1		
3.13	Problems on projection of solids inclined to both planes with solid resting on VP in simple position.	1		
	MODULE IV			
4.1	Introduction to section- Types of section planes -Sectional orthographic view of Prism when section plane perpendicular to VP inclined to HP	1		
4.2	Sectional orthographic view of Pyramid when section plane perpendicular to VP inclined to HP	1		
4.3	Sectional orthographic view of Cylinder when section plane perpendicular to VP inclined to HP	1		
4.4	Sectional orthographic view of Cone when section plane perpendicular to VP inclined to HP	1		
4.5	Sectional orthographic view of above solids when section plane perpendicular to HP inclined to VP	1		

4.6							
	Sectional orthographic view of above solids when true shape of the section is given	1					
4.7	Problems on Sectional orthographic view of above solids when true shape of the section is given	1					
4.8	.8 Development of surfaces of Right Regular Solids – Prism.						
4.9	Development of surfaces of Pyramid.	1					
4.10	Problems on development of Prism and Pyramid for sectional solids.						
4.11	4.11 Development of surfaces of Right Regular Solid- Cone and Cylinder.						
4.12	4.12 Problems on development showing shortest path.						
	MODULE V						
5.1	Principles of Isometric Projection-Isometric Scale-Isometric view	1					
5.1		1					
	Principles of Isometric Projection-Isometric Scale-Isometric view						
5.2	Principles of Isometric Projection-Isometric Scale-Isometric view Isometric view of simple solids (Pyramids and Prisms)	1					
5.2 5.3	Principles of Isometric Projection-Isometric Scale-Isometric view Isometric view of simple solids (Pyramids and Prisms) Isometric view of simple solids (Cylinder and Cone)	1					
5.2 5.3 5.4	Principles of Isometric Projection-Isometric Scale-Isometric view Isometric view of simple solids (Pyramids and Prisms) Isometric view of simple solids (Cylinder and Cone) Isometric projection of above solids	1 1 1					

LESSON PLAN FOR LAB COMPONENT


No.	Topic	No. of Hours	Experiment
1	Familiarization with AutoCAD commands and tools	2	Auto CAD drawing of Simple geometries
2	Dimensioning, conversion of isometric views in to orthographic views using AutoCAD	2	Conversion of simple components to orthographic views
3	AutoCAD Lab Test	2	Conversion of simple components to orthographic views

	CO Assessment Questions
CO1	 Construct a plain scale to show meters when 1cm represents 4 meters and long enough to measure up to 50 meters. Find the R.F. and mark on it a distance of 36 meters. Construct a diagonal scale of R.F.= 1:32,00,000 to show kilometers and long enough to measure up to 400 km. Show distances of 257 km on

	1
	your scale. 3. A room of 1000 m³ volume is represented by a block of 125 cm³ volume. Find R.F. and construct a plain scale to measure up to 30 m. Measure a distance of 18 m on the scale.
	1. The focus of a conic is 30 mm from directrix. Draw the locus of a point P moving in such a way that eccentricity is 2/3. Also draw a tangent and normal at any point on the curve.
	2. A circle of diameter 50 mm rolls on a straight line without slipping. Trace the locus of a point on the circumference of the circler rolling for one complete revolution. Name the curve, draw the tangent and normal
CO2	at any point on the curve.3. A point moves such that its distance from a fixed straight line to its distance from a fixed point is equal. Draw the locus of the curve traced by that point. Add a normal and tangent to the curve at 40mm above
	the axis.4. A roller of 40 mm diameter rolls over a horizontal table without slipping. A point on the circumference of the roller is in contact with the table surface in the beginning till one end of revolution. Draw the path traced by the point.
CO3	 The ends of three guy ropes are tied to a vertical post at a height of 20m above the ground. The other ends of the ropes are pegged to the ground. In the front view the distance between the first peg and the pole is 10m and is on the left side of the pole, while the other two pegs are on the right side of the pole and are 15m and 20m from the pole respectively. In the top view the bearings of the ropes appear as \$45°W, N30°E and \$40°E for the first, second and third ropes respectively. Find the true lengths and inclination of the ropes with the ground. Draw the projections of a cone having base diameter 50mm and 60mm axis, when it is resting on the ground on a point of its base circle with the axis inclined at 30° to the HP and 45° to the VP. by auxiliary projection method. The trophy to be given to the winners of the football tournament has a frustum of a hexagonal pyramid with the base hexagon of 30mm side, top hexagon of 20mm side and height 80mm. the frustum is placed on top of a square prism of 100mm side and height 20mm. a sphere of radius 28mm is placed centrally on top of the frustum. Draw the plan and elevation of the trophy.
CO4	 A cube with 45mm long edges rests on HP with vertical faces equally inclined to the VP. It is cut by a section plane perpendicular to the VP so that the true shape of the section is a regular hexagon. Draw the sectional top view and the true shape of the section. Determine the inclination of the section plane with the HP. A triangular prism with a base side of 50mm and a height of 80mm is standing on its end on the ground with a side of the end perpendicular to VP. It is cut by an A.I.P in such a way that the true shape of the section is a trapezium with parallel sides of 40mm and 12mm. Draw

- the projections and an auxiliary view showing the true shape of the section. Find the angle made by the cutting plane with the HP
- 3. A cone with a 50 mm base diameter and 70 mm long axis rests on its base on the HP. Draw the development of its lateral surface when it is cut by an auxiliary inclined plane bisecting the axis and inclined at 450 to the HP.
- 4. A sugar jar is in the form of a right circular cone of base diameter 60 mm and height 90 mm and it rests on HP. An ant starts moving from extreme left and of its base, returns to its starting point, after moving around it. Find geometrically the length of the shortest path the ant can take. Show this in both front and top views.
- 1. A hemisphere of diameter 80mm is resting on the ground with its flat surface facing upwards. A square pyramid having side of base 40mm and axis 60mm is resting on the base centrally on the top of the hemisphere. Draw the isometric view of the combination of solids.
- 2. A waste basket is of the shape of a frustum of a hexagonal pyramid with base side 30 cm, top side 50 cm and height 100 cm. Draw the isometric projection of the basket which is standing vertically with smaller hexagonal base on the ground.
- 3. Using any free software (2D drafting software), prepare the three orthographic views of the machine component shown in figure, following the ISO standards.

CO₅

CO6

- 1. Design a simple pen stand for your study table and draw the three orthographic views of the product using AutoCAD software, following the ISO standards of Engineering drawing and print it on A4 size paper and submit your design.
- 2. Design a small ornament box and draw the three orthographic views of the product using AutoCAD software, following the ISO standards of Engineering drawing and print it on A4 size paper and submit your design.

23ESL109/ 23ESL209	MANUFACTURING PRACTICES	L	T	P	J	s	С	Year of Introduction
		0	0	4	0	4	2	2023

Preamble:To enable the student to familiarize various tools, measuring devices, practices and different methods of manufacturing processes employed in industry for fabricating components. Topics that give exposure to the hands-on experience on various basic engineering practices in Mechanical, Electrical and Electronics Engineering are included. This helps the learners to apply this experience while developing product/project for the benefit of society.

	helps the		ers to a	apply tl	nis exp	erience	while o	develop	ing pro	duct/p	roject f	or the
	quisite											
Cour	se Outc	omes:	After th	ne comp	oletion	of the c	course	the stu	dent w	ill be al	ole to	
CO1	Identify different manufacturing processes which are commonly employed in the industry to fabricate components [Understand level]											
CO2	Use ap					nents was per th		-			cal wor	kshop
соз	.00			1. 100-		l wiring for sim		7		The second second		es and
CO4	Develo (Apply		chemat	ics and	l execu	te simp	ole wiri	ng circı	aits for	domes	stic buil	ldings.
CO5						ic comp ng. [Un				lectron	ic circu	uits on
	11	11	9	1	CO - 1	PO MA	PPING	als.	1	10	3/1	
СО	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12
CO1	✓	✓	X	VIII.		130			1	1357	///	
CO2	√	✓	W	-40		- 1931		7	✓	✓	/	✓
соз	✓	✓	19			41		1	✓	√		✓
CO4	√	193	1	1	1		7	13 "	✓	√		√
CO5	✓		-		- 64	U1	-0	1	✓	√		√
	,				Assess	ment I	Pattern	-	4			

Plaam's Catagory	Continuous Assessment Tools				
Bloom's Category	Class work	Test1			
Remember					
Understand	✓	✓			
Apply	✓	✓			
Analyse	✓	✓			
Evaluate	✓				
Create	✓				

Mark Distribution of CIA								
Course Structure [L-T-P-J]	Attendance	Class work	Lab Exam	Total Marks				
0-0-4-0	5	55	40	100				
Total Mark distribution								
Total Marks	CIA (Marks) ESI	E (Marks)	ESE Duration				
	100		0	-				

SYLLABUS- DETAILS OF EXPERIMENTS

- Manufacturing Methods- Moulding and casting, and sheet metal
- Conventional Machining (turning, drilling and shaping), CNC Machining
- Fitting operations, Welding (Arc, gas and brazing)
- Carpentry & power tools, Plumbing, Plastic moulding and glass cutting
- Electrical engineering Study of tools, accessories and safety rules, batteries and earthing, Electrical machines and Transformer. Wiring exercises for simple circuits
- Electronics Engineering Study of electronic components, instruments, testing of electronic devices. Soldering exercises on PCB and electronic circuits

Text books

- 1. Veerana D. K., Workshop / Manufacturing Practices, ISBN 9391505333
- 2. Robert L.Boylestad' "Electronic Devices and Circuit Theory", Prentice Hall of India, 2007
- 3. D C Kulshreshtha, "Basic Electrical Engineering", Tata McGraw Hill, 2010

Reference books

- 1. Hajra Choudhury S.K., Hajra Choudhury A.K. and Nirjhar Roy S.K., "Elements of Workshop Technology", Vol. I 2008 and Vol. II 2010, Media promoters and publishers private limited, Mumbai.
- 2. Kalpakjian S. And Steven S. Schmid, "Manufacturing Engineering and Technology", 4th edition, Pearson Education India Edition, 2002.
- 3. Gowri P. Hariharan and A. Suresh Babu," Manufacturing Technology I" Pearson Education, 2008.
- 4. Roy A. Lindberg, "Processes and Materials of Manufacture", 4th edition, Prentice Hall India, 1998.
- 5. Rao P.N., "Manufacturing Technology", Vol. I and Vol. II, Tata McGraw Hill House, 2017.
- 6. https://archive.nptel.ac.in/courses/112/107/112107219/mooc
- 7. Bernard Grob, "Basic Electronics", Tata McGraw Hill, 2000

LIST OF EXPERIMENTS

	Mechanical 24 Hrs				
No.	Experiments				
1	Study and Exercise on foundry. Preparation of mould and making the cast of a given component				
2	Study and Exercise on sheet metal. Make the box/can/tray with metal sheet as per the design				
3	Study and Exercise on fitting and joining. Prepare the joints and weld together as per the drawing				
4	Study and Exercise on Machining Prepare the model as per the drawing using turning, shaping and drilling operations.				
5	Study and Exercise on Carpentry. Make simple wooden products like box, rack, etc using power tools.				
6	Study and Exercise on plumbing. Do the pipeline assembly as per the sketch				
7	Study on CNC Machine, Injection moulding machine, Glass cutting (Demo only				
8	Study on Electric devices and wiring. Exercise on simple wiring for lighting, fan, etc as per the design				
9	Study on electronic components and soldering. Exercise on soldering the PCB and circuits as per the given design.				

	ELECTRICAL WORKSHOP -12 Hrs
1	 Introduction to the precautionary steps adopted for Electrical shocks. Identify the Tools used for Electrical Wiring Study of Electrical Circuit Symbols and familiarization of wiring Accessories.
2	Prepare an estimate and Wire-up: A circuit having one light and fan point.
3	Prepare an estimate and Wire-up: A light/fan circuit using two-way switches. (Staircase wiring)
4	Prepare an estimate and Wire-up: A circuit having fluorescent lamp and socket outlet (6A).

_	Prepare an estimate and Wire-up: A Distribution board with one light point
5	and one power outlet (16A) as sub circuits.
	i) Demonstration of inverter wiring
6	ii) Demonstration of Earthing Schemes.
	iii)Demonstration of Earth resistance measurement using equipment.

	ELECTRONICS WORKSHOP -12 Hrs
1	Familiarization and identification of active and passive electronic components (Resistor, Capacitor, Inductor, diode, transistor, sensing elements, transformer) • Calculation of values, Usage of Data Sheets to find various specifications of Components.
2	 Familiarization of Electronic Equipments (Fixed and Variable Power Supply, Function Generator, CRO, Ammeter, Voltmeter etc.) Generation of Periodic waveforms using function generator and measuring various parameters. (Peak Value, Peak to Peak Value, RMS Value, Frequency etc.) Testing of Diode and Transistors Measurement of Current and Voltage in Series and Parallel resistor
3	 Implementation of Circuits in bread board Connecting LED from supply (Application of Resistor). LED Connection using capacitor (Charge Storage application of Capacitor). Application of Sensing Element (LDR). Full wave Bridge Rectifier Circuit
4	Soldering Practice • Full Wave Bridge Rectifier
5	 Introduction to Electronic Simulation tools- LT SPICE Voltage and current through Series and Parallel passive components for AC and DC inputs. Simulation of rectifier circuits.

	CO Assessment Questions
1	Identify the best suitable manufacturing processes for a given product/design
2	A team work to fabricate the component as per the given design using available manufacturing methods and submit the report
3	Identify the components in the electric system shown in the drawing and complete the wiring as per the drawing to get the required result
4	Identify the electronic components in the given figure and assemble the component on a circuit board to enable the required function

23MCT110/ 23MCT210	SPORTS AND YOGA	L	T	P	J	s	С	Year of Introduction
	of oktorika rodn	2	0	0	0	2	0	2023

Preamble: This course enables the learners to understand how to attain physical fitness, mental well-being, and holistic growth through the combined benefits of sports and yoga. The topics covered in this course are Physical fitness, wellness and exercise programmes, First aid, Fundamentals of Anatomy & physiology in physical education, Postures & nutrition, Sports & games and Yoga & Lifestyle. This course helps the students to develop appreciation of physical activity as a lifetime pursuit and a means to better health.

Drara	quisite:	MII
LICIC	uuisite.	TITL

Course Outcomes: After the completion of the course the student will be able to

- Demonstrate the need of physical activities and Yoga for the strength, flexibility, and relaxation of mind and body. [Apply level]
- **CO 2** Use scientific principles of exercise and training in daily routine. [Apply level]
- Apply first aid promptly and appropriately whenever and wherever the need arises.

 [Apply level]
- CO 4 Identify the importance of the components of health-related fitness, such as cardio respiratory endurance, flexibility, and body composition. [Understand level]
- CO 5 Use the opportunities to participate in sports and games activities with a scientific approach. [Apply level]

CO - PO MAPPING

СО	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12
CO 1	1	1	1			-221		✓	1	√	11	✓
CO 2	1	16		Vii		- 13	100	✓	√	✓	1	✓
со з		11	B	1	_	✓		1	✓	✓		✓
CO 4		1	100	11	_			✓	✓	✓		✓
CO 5			1	0	0	1111	0	✓	1	✓		✓

Assessment Pattern

Bloom's Category	Continu	End Semester		
Diddin's Category	Test1	Test 2	Other tools	Examination
Remember	✓	✓	✓	✓
Understand	✓	✓	✓	✓
Apply	✓	✓	✓	✓
Analyse			✓	

Evaluate		✓	
Create		✓	

		Mark Dis	stribution o	f CIA			
			1	Theory [L- 1	[`]	•	
Course Structure [L-T-P-J]		Attendance	Assignment	Test-1	Test-2	Total Marks	
2-0-0-0		5	35	30	30	100	
-	1	Total M	ark distribu	ition	11		
	1. Cm			1	3/1		
Total Marks	CIA	(Marks)	ESE	(Marks)	ESE	Duration	
100	1	100			A A STATE	7	

SYLLABUS

MODULE I: Physical fitness, wellness and exercise programmes.

- Meaning and importance of physical fitness and wellness.
- Components of physical fitness and health related fitness.
- How to start an exercise programme.
- Exercise for improving speed, strength, endurance, and flexibility and co ordinative abilities.
- Exercises to prevent back pain, tennis elbow, shoulder injury and knee pain, Neck pain.
- Fitness test battery for speed, strength, endurance, flexibility.
- Importance of weight training.
- Warming up and cooling down.
- How to deal with every day stress.

MODULE II: First aid

- First aid and principles of first aid
- First aid measure for the following Bleeding through Nose, Snakebite, Dog Bite, Electric Shock, Burns and Drowning
- Common injuries and their management Wounds, Cuts, Sprain, Fracture and Dislocation.
- Cardio Pulmonary Resuscitation. (CPR)
- How to prevent muscle cramps and its management.
- How to carry an injured person.

MODULE III: Fundamentals of Anatomy and physiology in physical education, Postures and nutrition

- Define Anatomy, physiology and its importance.
- Effects of exercise on the functioning of various body system (Circulatory system, muscular system and respiratory system)
- Posture and its importance.
- Common Postural Deformities-Knock Knee, Flat Foot, Round Shoulders, Lordosis, Kyphosis, Bow Legs and Scoliosis.
- Corrective Measures for Postural Deformities.
- Balanced diet, malnutrition and Deficiency diseases.
- Hydration.

MODULE IV: Sports and games

- Following subtopics related to anyone game/sport of choice of student out of Football, Shuttle badminton, Volleyball, Basketball, Tennis and Cricket
- History of the game / sports.
- Latest general rule of the game / sports.
- Specification of play fields and related sports equipments

MODULE V: Yoga & Lifestyle

- Meaning & importance of Yoga.
- Elements of Yoga
- Introduction-Asanas, Pranayama, Meditation & Yogic Kriyas.
- Yoga for concentration & related Asanas (Sukhasana; Tadasana; Padmasana & Shashankasana)
- Relaxation Techniques for improving concentration-Yog-nidra.
- Asanas as preventive measure.
- Hypertension: Tadasana, Vajrasana, Pavan Muktasana, Ardha Chakrasana, Bhujangasana, Sharasana.
- Obesity: Procedure, Benefits & contraindications for Vajrasana, Hastasana, Trikonasana, Ardh Matsyendrasana.
- Back pain: Tadasana, Ardh Matsyendrasana, Vakrasana, Shalabhasana, Bhujangasana.
- Diabetes: Procedure, Benefits & Contraindications for Bhujangasana, Paschimottasana, Pavan Muktasana, Ardh Matsyendrasana.
- Asthema: Procedure, Benefits & Contraindications for Sukhasana, Chakrasana, Gomukhasana, Parvatasana, Bhujangasana, Paschimottasana, Matsyasana.

Text books

- 1. Modern Trends and Physical Education by Prof. Ajmer Singh.
- 2. Light on Yoga by B.K.S. Iyengar.
- 3. Health and Physical Education- NCERT (11th and 12th Classes)

Reference books

- 1. Physiological aspects of sports training and performance by Jay Hoffman.
- 2. Periodization theory and methodology of training by Tudor O Bompa and G Grisgery Haff.
- 3. Essential of strength training and conditioning by Thomas Baechle E R, Roger W Earle.

4. 5.	A practice guide to emergency first aid, safety injuries, illnesses by Montre	eal.
	OURSE CONTENTS AND LECTURE SCHEDULE	
No.		No. of Hours [26]
	MODULE 1: Physical fitness, wellness and exercise programmes.	
1.1	Meaning and importance of physical fitness and wellness.Components of physical fitness and health related fitness.	1 Hour
1.2	 How to start an exercise programme. Exercise for improving speed, strength, endurance, and flexibility and co ordinative abilities. 	1 Hour
1.3	• Exercises to prevent back pain, tennis elbow, shoulder injury and knee pain, Neck pain.	1 Hour
1.4	Fitness test battery for speed, strength, endurance, flexibility.	1 Hour
1.5	Importance of weight training.Warming up and cooling down.	1 Hour
1.6	How to deal with every day stress.	1 Hour
	MODULE II: First aid	1.0
2.1	 First aid and principles of first aid First aid measure for the following – Bleeding through Nose, Snakebite, Dog Bite, Electric Shock, Burns and Drowning. 	1 Hour
2.4	• Common injuries and their management - Wounds, Cuts, Sprain, Fracture and Dislocation.	1 Hour
2.5	Cardio pulmonary resuscitation. (CPR)	1 Hour
2.6	How to prevent muscle cramps and its management.How to carry an injured person	1 Hour
M	ODULE III: Fundamentals of Anatomy and physiology in physical educ	cation,
	Postures and nutrition	
3.1	 Define Anatomy, physiology and its importance. Effects of exercise on the functioning of various body system (Circulatory system, muscular system and respiratory system) 	1 Hour
3.2	 Posture and its importance. Common Postural Deformities-Knock Knee; Flat Foot; Round Shoulders; Lordosis, Kyphosis, Bow Legs and Scoliosis. Corrective Measures for Postural Deformities. 	1 Hour
3.3	Balanced diet, mal nutrition and Deficiency disease.	1 Hour
3.4	Hydration.	1 Hour
	MODULE IV: Sports and games.	t of
4.1	Following subtopics related to anyone game/sport of choice of student ou	
	• Football	1 Hour

4.2	Shuttle badminton	1 Hour
4.3	Volleyball	1 Hour
4.4	Basketball	1 Hour
4.5	Cricket	1 Hour
4.6	 Tennis History of the game / sports. Latest general rule of the game / sports. Specification of play fields and related sports equipments. 	1 Hour
	Module 5-Yoga & Lifestyle	
5.1	 Meaning & importance of Yoga. Elements of Yoga Introduction-Asanas, Pranayama, Meditation & Yogic Kriyas. Yoga for concentration & related Asanas (Sukhasana; Tadasana; Padmasana & Shashankasana) Relaxation Techniques for improving concentration-Yog-nidra. Asanas as preventive measures 	1 Hour
5.2	 Hypertension: Tadasana, Vajrasana, Pavan Muktasana, Ardha Chakrasana, Bhujangasana, Sharasana. Obesity: Procedure, Benefits & contraindications for Vajrasana, Hastasana, Trikonasana, Ardh Matsyendrasana. Back pain: Tadasana, Ardh Matsyendrasana, Vakrasana, Shalabhasana, Bhujangasana. 	1 Hour
5.3	• Diabetes: Procedure, Benefits & Contraindications for Bhujangasana, Paschimottasana, Pavan Muktasana, Ardh Matsyendrasana.	1 Hour
5.4	• Asthema: Procedure, Benefits & Contraindications for Sukhasana, Chakrasana, Gomukhasana, Parvatasana, Bhujangasana, Paschimottasana, Matsyasana.	1 Hour

	CO Assessment Questions
1	 Group Activity - Group discussion about the need and benefits of physical activities and Yoga for the strength, flexibility, and relaxation of mind & body. Make a demonstrative video about various yoga poses with the members in your team - Break down the yoga poses that you learned into smaller steps or stages. Demonstrate each step slowly and methodically, explaining the alignment, placement of body parts, and any variations or modifications. Emphasize proper breathing techniques throughout the demonstration.
2	1. Analyze the exercise activities of at least five famous personalities and give a PPT presentation about how each one of them uses physiological principles

related to exercise and training in daily routine.

- 2. Conduct a survey on how the following categories of people follow physiological principles related to exercise and training in daily routine.
 - 1. Sports person
 - 2. Working woman
 - 3. Students
 - 4. Ladies in the age group of 25-35, 35-45,45-55,55-65, above 65
 - 5. Gents in the age group of 25-35, 35-45,45- 55,55-65, above 65

Prepare a survey form and conduct the survey. Based on the survey give a presentation about your findings and demonstrate whether it matches with the concepts you learned.

With a role play, illustrate various first aid activities that can be followed at various situation in life. In each illustration, try to give emphasis on dos and don'ts to be followed in each situation.

Observe at least 10 students in your class and identify Common Postural Deformities each one of them have. Also identify good posters they follow. Have a discussion with each one of them to identify whether they have already recognized it or not. Make a report about it.

Create a video presentation about the exercises to prevent back and shoulder pain.

Create a PPT presentation on the rules of any one of the sports items given below. Try to identify the rules violated by some players in some popular competition and include those cases in the PPT.

• Football

3

- Shuttle badminton
- Volleyball
- Basketball
- Cricket
- Tennis

23CHT113	13 INTRODUCTION TO CHEMICAL	L	T	P	J	s	С	Year of Introduction
	ENGINEERING	2	0	0	0	2	2	2023

Preamble: This course offers a comprehensive overview of the evolution, essence, concepts, and functions of Chemical Engineering. Also, it discusses the career diversities in modern chemical engineering. The course is expected to enhance student's understanding and performance in the field and the development of profession worldwide.

Prerequisite: Nil

Course Outcomes: After the completion of the course the student will be able to:

CO2 Perform Unit Conversions.

CO3 Distinguish different Unit Operations and Unit Processes.

CO4 Identify the safety and environmental aspects of Chemical Processes/Products.

CO5 Outline career options and potential job functions of a Chemical Engineer.

CO - PO MAPPING

co	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10 PO11	PO12
CO1	✓	X		/		A.			1	1511	✓
CO2	✓	✓		18		441		Alexander Alexander	- 1	1/1/11	
соз	✓	19	1	10		101		17		1/11/1	
CO4	7	16	%\c	V	i.	✓	√		//	-	
CO5		11	12	1	-	372	100		13	1//	✓

Assessment Pattern

Bloom's Category	Continue	End Semester		
Diodin's Category	Test 1	Test 2	Other tools	Examination
Remember	✓	✓	✓	
Understand	✓	✓	✓	
Apply	✓	✓	✓	
Analyse			✓	
Evaluate			✓	

Create			✓		
	Mark Dis	stribution o	f CIA	'	
		•	Theory [L- 1	`]	
Course Structure [L-T-P-J]	Attendance	Assignment	Test-1	Test-2	Total Marks
2-0-0-0	х	40	30	30	100

	Total Mark	distribution	
Total Marks	CIA (Marks)	ESE (Marks)	ESE Duration
100	100	X	X

MAR COLL

SYLLABUS

MODULE I: Chemical Engineering – Definition, Historical Development, and Future (04 Hrs)

Definition of chemical engineering, historical perspective and contribution, Integration with other engineering disciplines.; Origin and development of Chemical process industry. Future roadmap of chemical engineering.

MODULE II: Fundamental Concepts of Stoichiometry (05 Hrs)

Units and dimensions, systems of units, conversion and conversion factors of units, the concept of mole, weight percent, mole percent, normality, molarity, and molality.

MODULE III: Concept of Unit Processes and Unit Operations (05 Hrs)

Concept of Unit Processes and Unit Operations: Description of different Unit Processes and Unit Operations, Batch processing, the transition from batch processing to continuous, Block diagram and process flow diagram of DCDA process for the manufacture of sulphuric acid.

MODULE IV: Process Safety and Environmental Engineering (05 Hrs)

Introduction to safety in chemical process industries – basic concepts, Case study: Bhopal gas tragedy. Introduction to Environmental Engineering – basic concepts, Typical wastewater, air, and solid waste management systems. Case study: Effect of Aerial

Spraying of Endosulfan on Residents of Kasaragod, Kerala. Challenges of Chemical Engineer.

MODULE V: Career Diversities in Chemical Engineering (05 Hrs)

Career Diversities in Chemical Engineering: Career Development Leading to Specialization, Chemical Engineering Job Titles/Options, Chemical and Process Engineer, Commissioning Engineer, Process Control/Automation Engineer, Process Safety Engineer, Research & Development Engineer, Pharmaceutical Process Engineer, Pipeline Engineer, Chemical Manufacturing Engineer, Environment Engineer.

Textbooks

- Pushpavanam, S., Introduction to Chemical Engineering, PHI Learning Pvt. Ltd.
- Uche P. Nnaji, Introduction to Chemical Engineering: For Chemical Engineers and Students, Scrivener Publishing, Wiley.

Reference books

- Badger and Banchero, Introduction to Chemical Engineering, McGraw Hill.
- McCabe, W.L. Smith, J.C. and Harriott, P., Unit Operations in Chemical Engineering, McGraw Hill.

	COURSE CONTENTS AND LECTURE SCHEDULE	1
No.	5 11911	No. of Hours
	MODULE 1	
1.1	Definition of chemical engineering, historical perspective and contribution	1
1.2	Integration with other engineering disciplines.	1
1.3	Origin and development of chemical process industry.	1
1.4	Future roadmap of chemical engineering	1
	MODULE II	
2.1	Systems of units, conversion, and conversion factors of units	1
2.2	Concept of mole, weight percent	1
2.3	Concept of mole percent, normality	1
2.4	Concepts of molarity, molality	1
2.5	Concept of vapor pressure, partial pressure	1
	MODULE III	1
3.1	Concept of Unit Processes and Unit Operations	1
3.2	Description of different Unit Processes and Unit Operations	1

3.3	Batch processing, the transition from batch processing to continuous	1
3.4	Introduction to block diagram and process flow diagram	1
3.5	Block diagram and process flow diagram of DCDA process for the manufacture of sulphuric acid.	1
	MODULE IV	
4.1	Basic Concepts of Safety in chemical process industries	1
4.2	Case study: Bhopal gas tragedy.	1
4.3	Introduction to Environmental Engineering - basic concepts, Typical wastewater, air, and solid waste management systems.	1
4.4	Case study: Effect of Aerial Spraying of Endosulfan on Residents of Kasaragod, Kerala	1
4.5	Challenges of Chemical Engineer.	1
	MODULE V	
5.1	Career Diversities in Chemical Engineering: Career Development Leading to Specialization	1
5.2	Chemical Engineering Job Titles/Options, Chemical and Process Engineer	1
5.3	Commissioning Engineer, Process Control/Automation Engineer, Process Safety Engineer	1
5.4	Research & Development Engineer, Pharmaceutical Process Engineer, Pipeline Engineer.	1
5.5	Chemical Manufacturing Engineer, Environment Engineer.	1

	CO Assessment Sample Questions
1	List any five important chemical process industries. Enumerate their main products and end uses.
2	A solution of caustic soda in water contains 20% NaOH by weight. The density of the solution is 1196 kg/m ³ . Find the molarity and molality of the solution.
3	Identify the unit operations and unit processes involved in the manufacture of Sulphuric acid.
4	List the major causes of Bhopal gas tragedy.
5	Identify the diverse areas in which a Chemical Engineer can work.

23EST114	BASICS OF ELECTRONICS	L	Т	P	J	S	С	Year of Introduction
20201114	ENGINEERING	2	0	0	0	2	2	2023

Preamble: The aim of this course is to introduce the fundamental concepts of electronic devices, circuits, measuring instruments and instrumentation systems. The course covers the basics of analog and digital electronic circuits, instrumentation, measurement systems and sensors. The course will inculcate the students to get an insight in to application of electronics in industry.

Prerequisite: Nil

Course Outcomes: After the completion of the course the student will be able to

- **CO 1** Explain the different types and characteristics of passive components used in electronic circuits. (Understand)
- CO 2 Describe the structure and characteristics of basic semiconductor devices. (Understand)
- **CO 3** Explain the working of a voltage amplifier and power supply. (Understand)
- **CO 4** Explain the working of an electronic measuring instruments. (Understand)
- **CO 5** Describe the sensors used for different applications. (Understand)

CO - PO MAPPING

СО	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12
CO 1	✓	10		1			10.0		4	1	921	
CO 2	✓	7		1		7		✓	✓	✓	21	
со з	✓	✓	Ų	1		-111		7		11	77/1	
CO 4	✓	✓	1/2	V-182	√	183		1-1-	1	12	7//	
CO 5	✓	✓	2	M		100	(186		1	W.	11	

Assessment Pattern

	Continuou	s Assessme		
Bloom's Category	Test1	Test 2	Other tools	End Semester Examination
Remember	✓	✓	√	
Understand	✓	√	✓	
Apply				
Analyse				
Evaluate				
Create				

			Theory []	L- T]	
Course Structure [L-T-P-J]	Attendance	Assignment	Test-1	Test-2	Total Marks
2-0-0-0	5	35	30	30	100

MODULE I: Electronic Components

(5 Hours)

Application of Electronics in various fields.

Active and Passive components- Comparison, Passive Components -Resistors, Capacitors and Inductors: types, specifications, standard values, color coding and applications. (Constructional details not required)

MODULE II: Semiconductors Physics

(6 Hours)

N and P type semiconductors

PN junction diode - Construction, working and VI characteristics.

Bipolar Junction Transistor - PNP and NPN structures, principle of operation, input and output characteristics of CE configuration, relation between current gains in CE, CB and CC configuration.

MOSFET Structure. Comparison of BJT and MOSFET.

MODULE III: Basic Electronics Circuits

(4 Hours)

Power supply: Block diagram description of a dc power supply, working of a full wave bridge rectifier, capacitor filter and voltage regulator. (Analysis not required)

Amplifiers: Circuit diagram and working of common emitter (RC coupled) amplifier with its frequency response. (Analysis not required)

MODULE IV: Digital Logic and Instrumentation Systems

(5 Hours)

Introduction to Digital Logic: Decimal to Binary conversion, Basic logic gates with truth table, Universal Gates, Simple function implementation using logic gates.

Instrumentation: Basics of PMMC meters - Voltage, Current and Resistance measurement, Block diagram of Digital Multimeter, Digital Storage Oscilloscope - Block diagram only.

MODULE V: Electronic Sensors and Measurements

(4Hours)

Sensors: Temperature – Thermocouples and Resistance Temperature Detectors, Pressure - Piezoelectric sensors, Strain gauge. Measurement of Viscosity, Flow and Pressure.

Text books

- 1. Robert L. Boylestad and Louis Nashelsky, Electronic Devices and Circuit Theory, Pearson, 11th Ed., 2015.
- 2. N.N. Bhargava, D.C.Kulshreshtha, S. C. Gupta, Basic Electronics and Linear circuits, Mc Graw Hill Education, 2nd edition, 2017.
- 3. David A Bell, Electronic Devices & Circuits, Oxford, 5th edition, 2017.
- 4. Thomas L Floyd, "Digital Fundamentals", Pearson, 2011
- 5. H S Kalsi' "Electronics Instrumentation", Tata McGraw-Hill, 2004

Reference books

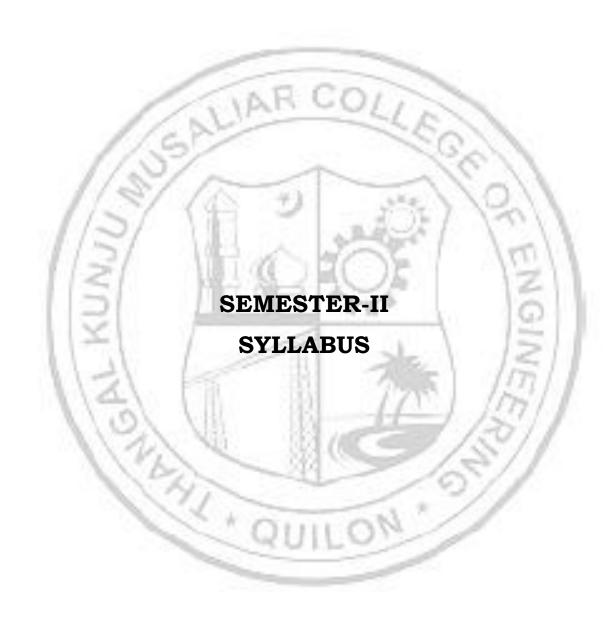
2.2

characteristics

- 1. Bernard Grob, "Basic Electronics", Tata McGraw Hill, 2000
- 2. R P Jain, "Modern Digital Electronics", Tata McGraw Hill, 2009
- 3. R K Rajput, "Electronic Instrumentation and Measurement", S Chand, 2009

COURSE CONTENTS AND LECTURE SCHEDULE

4. Introduction to Electronics, Coursera (MOOC) https://www.coursera.org/learn/electronics


No. of No. Hours **MODULE 1: Electronic Components** 1 Application of Electronics in various fields. 1.1 Active and Passive components – Comparison 1 1.2 Passive components: Resistors - Color coding and applications. 1.3 Resistors-types, specifications, standard values. 1 1 Capacitors: types, specifications, color and number coding, 1.4 applications 1.5 Inductors: types, specifications and applications. 1 **MODULE II: Semiconductors Physics** Semiconductors – Introduction. N and P type semiconductors 1 2.1PN junction diode – Construction, working of PN junction diode, VI 1

Bipolar Junction Transistor - PNP and NPN structures, Principle of operation 2.4 Input and Output characteristics of BJT (CE configuration) 2.5 Relation between current gains in CE, CB and CC configuration 2.6 MOSFET structure. Comparison of BJT and MOSFET. 1 MODULE III: Basic Electronic Circuits 3.1 Power supply: Block diagram description of a dc power supply. 3.2 Working of a full wave bridge rectifier, capacitor filter (no analysis) 3.3 Voltage Regulators: Simple Zener Voltage Regulator 3.4 Amplifiers: Circuit diagram and working of common emitter (RC 1 coupled) amplifier with its frequency response. MODULE IV: Digital Logic And Instrumentation Systems 4.1 Introduction to Digital Logic: Decimal to binary conversion, Basic 1 logic gates with truth table 4.2 Universal Gates, implementation of logic function using gates. 4.3 Basics of PMMC meters - Voltage, Current and Resistance measurement. 4.4 Digital multimeter-Block diagram and explanation 1 Digital Storage Oscilloscope - Block diagram and explanation 1 MODULE V: Electronic Sensors And Measurements 5.1 Sensors: Temperature sensors - Thermocouples and Resistance Temperature Detectors 5.2 Pressure sensors- Piezoelectric sensors, Strain gauge 1 S.3 Measurement of viscosity and flow of liquid. 5.4			
2.5 Relation between current gains in CE, CB and CC configuration 2.6 MOSFET structure. Comparison of BJT and MOSFET. 1 MODULE III: Basic Electronic Circuits 3.1 Power supply: Block diagram description of a dc power supply. 3.2 Working of a full wave bridge rectifier, capacitor filter (no analysis) 3.3 Voltage Regulators: Simple Zener Voltage Regulator 3.4 Amplifiers: Circuit diagram and working of common emitter (RC coupled) amplifier with its frequency response. MODULE IV: Digital Logic And Instrumentation Systems 4.1 Introduction to Digital Logic: Decimal to binary conversion, Basic logic gates with truth table 4.2 Universal Gates, implementation of logic function using gates. 4.3 Basics of PMMC meters - Voltage, Current and Resistance measurement. 4.4 Digital multimeter-Block diagram and explanation 4.5 Digital Storage Oscilloscope - Block diagram and explanation 1 MODULE V: Electronic Sensors And Measurements 5.1 Sensors: Temperature sensors - Thermocouples and Resistance Temperature Detectors 5.2 Pressure sensors- Piezoelectric sensors, Strain gauge 5.3 Measurement of viscosity and flow of liquid. 1	2.3	-	1
MODULE III: Basic Electronic Circuits 3.1 Power supply: Block diagram description of a dc power supply. 3.2 Working of a full wave bridge rectifier, capacitor filter (no analysis) 3.3 Voltage Regulators: Simple Zener Voltage Regulator 3.4 Amplifiers: Circuit diagram and working of common emitter (RC coupled) amplifier with its frequency response. MODULE IV: Digital Logic And Instrumentation Systems 4.1 Introduction to Digital Logic: Decimal to binary conversion, Basic logic gates with truth table 4.2 Universal Gates, implementation of logic function using gates. 4.3 Basics of PMMC meters - Voltage, Current and Resistance measurement. 4.4 Digital multimeter-Block diagram and explanation 4.5 Digital Storage Oscilloscope - Block diagram and explanation 1 MODULE V: Electronic Sensors And Measurements 5.1 Sensors: Temperature sensors - Thermocouples and Resistance Temperature Detectors 5.2 Pressure sensors- Piezoelectric sensors, Strain gauge 1 1 5.3 Measurement of viscosity and flow of liquid. 1	2.4	Input and Output characteristics of BJT (CE configuration)	1
MODULE III: Basic Electronic Circuits 3.1 Power supply: Block diagram description of a dc power supply. 3.2 Working of a full wave bridge rectifier, capacitor filter (no analysis) 3.3 Voltage Regulators: Simple Zener Voltage Regulator 3.4 Amplifiers: Circuit diagram and working of common emitter (RC coupled) amplifier with its frequency response. MODULE IV: Digital Logic And Instrumentation Systems 4.1 Introduction to Digital Logic: Decimal to binary conversion, Basic logic gates with truth table 4.2 Universal Gates, implementation of logic function using gates. 4.3 Basics of PMMC meters - Voltage, Current and Resistance measurement. 4.4 Digital multimeter-Block diagram and explanation 4.5 Digital Storage Oscilloscope - Block diagram and explanation 1 MODULE V: Electronic Sensors And Measurements 5.1 Sensors: Temperature sensors - Thermocouples and Resistance Temperature Detectors 1 Temperature Detectors 3 Measurement of viscosity and flow of liquid. 1 1	2.5	Relation between current gains in CE, CB and CC configuration	1
3.1 Power supply: Block diagram description of a dc power supply. 3.2 Working of a full wave bridge rectifier, capacitor filter (no analysis) 3.3 Voltage Regulators: Simple Zener Voltage Regulator 3.4 Amplifiers: Circuit diagram and working of common emitter (RC coupled) amplifier with its frequency response. MODULE IV: Digital Logic And Instrumentation Systems 4.1 Introduction to Digital Logic: Decimal to binary conversion, Basic logic gates with truth table 4.2 Universal Gates, implementation of logic function using gates. 4.3 Basics of PMMC meters - Voltage, Current and Resistance measurement. 4.4 Digital multimeter-Block diagram and explanation 4.5 Digital Storage Oscilloscope - Block diagram and explanation 1 MODULE V: Electronic Sensors And Measurements 5.1 Sensors: Temperature sensors - Thermocouples and Resistance Temperature Detectors 1 Pressure sensors- Piezoelectric sensors, Strain gauge 1 Measurement of viscosity and flow of liquid. 1	2.6	MOSFET structure. Comparison of BJT and MOSFET.	1
3.2 Working of a full wave bridge rectifier, capacitor filter (no analysis) 3.3 Voltage Regulators: Simple Zener Voltage Regulator 3.4 Amplifiers: Circuit diagram and working of common emitter (RC coupled) amplifier with its frequency response. MODULE IV: Digital Logic And Instrumentation Systems 4.1 Introduction to Digital Logic: Decimal to binary conversion, Basic logic gates with truth table 4.2 Universal Gates, implementation of logic function using gates. 4.3 Basics of PMMC meters - Voltage, Current and Resistance measurement. 4.4 Digital multimeter-Block diagram and explanation 4.5 Digital Storage Oscilloscope - Block diagram and explanation 1 MODULE V: Electronic Sensors And Measurements 5.1 Sensors: Temperature sensors - Thermocouples and Resistance Temperature Detectors 1 Sensors: Temperature sensors - Strain gauge 1 Measurement of viscosity and flow of liquid. 1	МО	DULE III: Basic Electronic Circuits	
3.3 Voltage Regulators: Simple Zener Voltage Regulator 3.4 Amplifiers: Circuit diagram and working of common emitter (RC coupled) amplifier with its frequency response. MODULE IV: Digital Logic And Instrumentation Systems 4.1 Introduction to Digital Logic: Decimal to binary conversion, Basic logic gates with truth table 4.2 Universal Gates, implementation of logic function using gates. 1 Basics of PMMC meters - Voltage, Current and Resistance measurement. 4.4 Digital multimeter-Block diagram and explanation 1 Digital Storage Oscilloscope - Block diagram and explanation 1 MODULE V: Electronic Sensors And Measurements 5.1 Sensors: Temperature sensors - Thermocouples and Resistance Temperature Detectors 1 Degramment of viscosity and flow of liquid. 1 Degramment of viscosity and flow of liquid. 1 Degramment of viscosity and flow of liquid.	3.1	Power supply: Block diagram description of a dc power supply.	1
Amplifiers: Circuit diagram and working of common emitter (RC coupled) amplifier with its frequency response. MODULE IV: Digital Logic And Instrumentation Systems Introduction to Digital Logic: Decimal to binary conversion, Basic logic gates with truth table 4.2 Universal Gates, implementation of logic function using gates. 1 4.3 Basics of PMMC meters - Voltage, Current and Resistance measurement. 4.4 Digital multimeter-Block diagram and explanation 1 4.5 Digital Storage Oscilloscope - Block diagram and explanation 1 MODULE V: Electronic Sensors And Measurements 5.1 Sensors: Temperature sensors - Thermocouples and Resistance Temperature Detectors 1 5.2 Pressure sensors- Piezoelectric sensors, Strain gauge 1 5.3 Measurement of viscosity and flow of liquid. 1	3.2	Working of a full wave bridge rectifier, capacitor filter (no analysis)	1
MODULE IV: Digital Logic And Instrumentation Systems 4.1 Introduction to Digital Logic: Decimal to binary conversion, Basic logic gates with truth table 4.2 Universal Gates, implementation of logic function using gates. 4.3 Basics of PMMC meters - Voltage, Current and Resistance measurement. 4.4 Digital multimeter-Block diagram and explanation 4.5 Digital Storage Oscilloscope - Block diagram and explanation 1 MODULE V: Electronic Sensors And Measurements 5.1 Sensors: Temperature sensors - Thermocouples and Resistance Temperature Detectors 5.2 Pressure sensors- Piezoelectric sensors, Strain gauge 1 Measurement of viscosity and flow of liquid. 1	3.3	Voltage Regulators : Simple Zener Voltage Regulator	1
4.1 Introduction to Digital Logic: Decimal to binary conversion, Basic logic gates with truth table 4.2 Universal Gates, implementation of logic function using gates. 4.3 Basics of PMMC meters - Voltage, Current and Resistance measurement. 4.4 Digital multimeter-Block diagram and explanation 4.5 Digital Storage Oscilloscope - Block diagram and explanation 1 MODULE V: Electronic Sensors And Measurements 5.1 Sensors: Temperature sensors - Thermocouples and Resistance Temperature Detectors 1 5.2 Pressure sensors- Piezoelectric sensors, Strain gauge 1 5.3 Measurement of viscosity and flow of liquid. 1	3.4		1
4.1 logic gates with truth table 4.2 Universal Gates, implementation of logic function using gates. 1 4.3 Basics of PMMC meters - Voltage, Current and Resistance measurement. 4.4 Digital multimeter-Block diagram and explanation 1 4.5 Digital Storage Oscilloscope - Block diagram and explanation 1 MODULE V: Electronic Sensors And Measurements 5.1 Sensors: Temperature sensors - Thermocouples and Resistance Temperature Detectors 1 5.2 Pressure sensors- Piezoelectric sensors, Strain gauge 1 5.3 Measurement of viscosity and flow of liquid. 1	МО	DULE IV: Digital Logic And Instrumentation Systems	\
Hasics of PMMC meters - Voltage, Current and Resistance measurement. 4.4 Digital multimeter-Block diagram and explanation 1 4.5 Digital Storage Oscilloscope - Block diagram and explanation 1 MODULE V: Electronic Sensors And Measurements 5.1 Sensors: Temperature sensors - Thermocouples and Resistance Temperature Detectors 1 5.2 Pressure sensors- Piezoelectric sensors, Strain gauge 1 5.3 Measurement of viscosity and flow of liquid. 1	4.1		1
 measurement. 4.4 Digital multimeter-Block diagram and explanation 4.5 Digital Storage Oscilloscope – Block diagram and explanation MODULE V: Electronic Sensors And Measurements 5.1 Sensors: Temperature sensors – Thermocouples and Resistance Temperature Detectors 5.2 Pressure sensors- Piezoelectric sensors, Strain gauge 1 5.3 Measurement of viscosity and flow of liquid. 1 	4.2	Universal Gates, implementation of logic function using gates.	1
4.5 Digital Storage Oscilloscope – Block diagram and explanation MODULE V: Electronic Sensors And Measurements 5.1 Sensors: Temperature sensors – Thermocouples and Resistance Temperature Detectors 5.2 Pressure sensors- Piezoelectric sensors, Strain gauge 5.3 Measurement of viscosity and flow of liquid. 5.4	4.3		31
MODULE V: Electronic Sensors And Measurements 5.1 Sensors: Temperature sensors – Thermocouples and Resistance Temperature Detectors 1 5.2 Pressure sensors- Piezoelectric sensors, Strain gauge 1 5.3 Measurement of viscosity and flow of liquid. 1	4.4	Digital multimeter-Block diagram and explanation	211
5.1 Sensors: Temperature sensors – Thermocouples and Resistance Temperature Detectors 1 5.2 Pressure sensors- Piezoelectric sensors, Strain gauge 1 5.3 Measurement of viscosity and flow of liquid. 1	4.5	Digital Storage Oscilloscope - Block diagram and explanation	≥/ [
Temperature Detectors 1 5.2 Pressure sensors- Piezoelectric sensors, Strain gauge 1 5.3 Measurement of viscosity and flow of liquid. 1	MO	DULE V: Electronic Sensors And Measurements	7///
5.3 Measurement of viscosity and flow of liquid. 1	5.1		1
5.4	5.2	Pressure sensors- Piezoelectric sensors, Strain gauge	1
5.4	5.3	Measurement of viscosity and flow of liquid.	1
Measurement pressure of a liquid.	5.4	Measurement pressure of a liquid.	1

	CO Assessment Questions
1	Differentiate the type of resistors based on the material used and applications.
2	Illustrate the different current components of a transistor by performing a role play
3	Explain the role of the different components used in a RC coupled common emitter amplifier.

- Illustrate the measurement of voltage, current and resistance of a circuit using a digital multimeter.
- Explain the procedure for measuring the viscosity and pressure of a liquid.

		DIFF			QUAT		AND	L	Т	P	J	s	С	Yea	
23MA	P201			RANSFORMS					-	_	•		_	Introduction 2023	
	1.1		[Non	Circui	t branc	enesj		3	1	2	0	5	5	20:	23
methodequationseries veries ve	ourse in Mons, and which a urse had uisite: Course Outco	athemand basicare invalues appropriate app	atics when the control of the contro	nich ind forms any for any ingle and e comp s and s (Apply	elude or such as r engine I branc nd mult oletion of non-ho y level).	rdinary s Lapla eer's ma hes of c tivariat of the c omogen	difference and athema engineerale fundourse tourse tours and a difference to the fundourse tours and a difference and a diffe	ential Fontical Erin etion the	al eduri al to g. ns a stu ar	qua er ' oolb und der diff	tion Trai oox. pai pai t w	as, j nsfo The tia ill t	oart orm e to dif e a	quation	rential Fourier ated in tion.
CO 2	engin	eering ((Apply 1	evel).		2	-		ħ			1	3	ns aris	
со з	- 10 V				nsforms ms aris		7 400							functio	ns and
CO 4			the co		and t	the so	lution	of	pa	rtia	1 d	iffe	rent	tial equ	ations
CO 5	Analy level)	se and	solve	one-dir		#1	- 8	atio	n a	ınd	hea	at (equa	ation (A	ınalyse
	1	10	1		CO - F	PO MAI	PPING	17		٩,	1	1	17	111	
CO	PO1	PO2	PO3	PO4	PO5	P06	PO7	P	08	P	09	P	010	PO11	PO12
CO 1	✓	1	12	1	✓	30	S		/	1	✓		7		✓
CO 2	✓	1	10	11	1			-		. 4	✓	И,			✓
со з	✓	✓			√	1111	0	Ŋ	/	1	✓	1			✓
CO 4	✓	✓	-	W.	✓	W.F.		-	/	P	✓				✓
CO 5	✓	✓			✓				/		√				
									_		Ť				✓
			Asses	sment	Patter	n for T	heory		-						✓
Bloc	om's C	atego			Patter itinuou		essmei	co nt T	mp (one Is	nt]		l Seme	ster
Bloc	om's C	catego			tinuou		essmer	COI	mp (one Is	nt]		aminat	ster
Blo e Remen		Catego		Con	tinuou	ıs Asse	essmer	co nt T	mp (one ls too	nt]			ster

Apply		✓		✓	✓		•	
Analyse					✓			
Evaluate					✓			
Create					✓			
	As	ssessment	Pattern i	for Lab c	omponent			
Pla	oom's Cate			Cont	tinuous A	ssessm	ent T	ools
	Join's Cate	gory		Class	work		Tes	t1
Remember								
Understand		-	_	·			√	
Apply			A E	co		4	✓	
Analyse	-/-		100	-	10		✓	
Evaluate	11/	100		•	200	113	-	
Create	1/8	Mont	. Distribu	vtion of C	TA	1	1	
	1	Mark		-	-		1701	
	151	148	Theory	[L- 1]	PT	actical	[1]	
Course Structi T-P-J]	ure [L-	Attendance Assignment	Test-1	; ;	Class work		Lab Exam	Total Marks
11:	5/	At	90	1			Lai	Tot
	21	5 15		्री प्राप्त		1 1	Lat	90 T
	21	5 15) 1	0 20	1 1	Lai	
Total Mari	2	5 15	1 Marks d) 1	0 20)	GINE	11
Total Mari	2	5 15 Tota	1 Marks d) 1 listributi ESE (0 20 on)	GINE	60
100	ks	5 15 Total CIA (Mark	1 Marks d) 1 listributi ESE (0 20 on Marks))	SE Du	60 tration
111/1/2	ks	5 15 Tota: CIA (Mark 60 con [ESE]: 1	1 Marks d) 1 listributi ESE (0 20 on Marks))	SE D u	60
100 End Semester	ks Examinati	Total CIA (Mark 60 con [ESE]: 1 A 2 on sh ca div Ea	Pattern questions odule, ou ould be a n have a	PART I will be got of which a maximum and carrie 8 = 40 maxim	Marks) Ween from the chart of 2 to	each stion stion sub	SE Du 2.5 h ESE	60 aration

SYLLABUS

MODULE I: (Ordinary differential equations)

(Text 2: Relevant topics from sections 2.1, 2.2, 2.5, 2.6, 2.7, 2.10, 3.1, 3.2, 3.3)

Homogenous linear differential equation of second order, superposition principle, general solution, homogenous linear ODEs with constant coefficients-general solution. Solution of Euler-Cauchy equations (second order homogeneous only). Non-homogenous linear ODEs-general solution, solution by the method of undetermined coefficients (for the right-hand side of forms x^n , e^{kx} , sinax, cosax, $e^{ax}sinax$, $e^{ax}cosax$ and their linear combinations), method of variation of parameters. Solution of higher order equations-homogeneous linear ODE with constant coefficients.

MODULE II: (Laplace transforms)

(Text 2: Relevant topics from sections 6.1,6.2,6.3,6.4,6.5)

Laplace Transform and its inverse, Existence theorem (without proof), linearity, Laplace transform of basic functions, first shifting theorem, Laplace transform of derivatives and integrals, solution of differential equations using Laplace transform, Unit step function, Second shifting theorem. Convolution theorem (without proof) and its application to finding inverse Laplace transform of products of functions.

MODULE III: (Fourier Series and Transforms)

(Text 1: Relevant topics from sections 11.1, 11.2, 11.6, 9.1, 9.3, 9.4, 9.5, 9.6)

Taylor series (without proof, assuming the possibility of power series expansion in appropriate domains), Fourier series, Euler formulas, Convergence of Fourier series (without proof), half range sine and cosine series. Fourier integral representation, Fourier sine, and cosine integrals. Fourier sine and cosine transforms, inverse sine and cosine transform. Fourier transforms and inverse Fourier transform, basic properties.

MODULE IV: (Partial Differential Equations)

(Text 3-Relevant portions of sections 17.1, 17.2, 17.3, 17.4, 17.5, 17.7, 18.1, 18.2)

Partial differential equations, Formation of partial differential equations –elimination of arbitrary constants-elimination of arbitrary functions, Solutions of partial differential equations, Equations solvable by direct integration, Linear equations of the first order-Lagrange's linear equation, Solution of equation by the method of separation of variables.

MODULE V: (Applications of Partial Differential Equations)

(Text 3-Relevant portions of sections 18.3,18.4, 18.5)

One dimensional wave equation- vibrations of a stretched string, derivation, solution of the wave equation using method of separation of variables, One-dimensional heat equation, derivation, solution of the heat equation.

Text books

- 1. H. Anton, I. Biven S.Davis, "Calculus", Wiley, 10th edition, 2015.
- 2. Erwin Kreyszig, "Advanced Engineering Mathematics", Wiley, 10th edition, 2015.
- 3. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 44th Edition, 2018

Reference

- 8. J. Stewart, Essential Calculus, Cengage, 2nd edition, 2017
- 9. G.B. Thomas and R.L. Finney, Calculus and Analytic geometry, 9 th Edition, Pearson, Reprint, 2002.
- 10. Peter O Neil, Advanced Engineering Mathematics, 7th Edition, Thomson, 2007.
- 11.Louis C Barret, C Ray Wylie, "Advanced Engineering Mathematics", Tata McGraw Hill, 6th edition, 2003.
- 12. Veerarajan T, "Engineering Mathematics for first-year", Tata McGraw Hill, 2008.
- 13. Srimanta Pal, Subodh C. Bhunia, "Engineering Mathematics", Oxford University Press, 2015.
- 14. Ronald N. Bracewell, "The Fourier Transform and its Applications", McGraw Hill International Editions, 2000.
- 15. Prof. Sivaji Ganesh, Partial Differential Equations, IIT Bombay, [NPTEL] https://nptel.ac.in/courses/111101153 (Relevant sections).
- 16.Prof. Haynes Miller, Prof. Arthur Mattuck, Differential Equations [MITOPENCOURSEWARE] https://ocw.mit.edu/courses/18-03-differential-equations-spring-2010/download/ (Relevant sections)

	COURSE CONTENTS AND LECTURE SCHEDULE	
No.	11-1 /5/	No. of Hours
	MODULE 1	0
1.1	Homogenous linear equation of second order, Superposition principle, general solution	1
1.2	Homogenous linear ODEs of second order with constant coefficients	1
1.3	Homogenous linear ODEs of second order with constant coefficients (Continued).	1
1.4	Second order Euler-Cauchy equation	1
1.5	Non-homogenous linear differential equations of second order with constant coefficient-solution by undetermined coefficients	1
1.6	Non-homogenous linear differential equations of second order with constant coefficient-solution by undetermined coefficients (Continued)	1
1.7	Variation of parameters.	1
1.8	Higher-order equations with constant coefficients	1

1.9	Higher-order equations with constant coefficients (Continued).	1
	MODULE II	
2.1	Laplace Transform, inverse Transform, Linearity	1
2.2	First shifting theorem, transform of basic functions	1
2.3	Transform of derivatives and integrals	1
2.4	Solution of Differential equations, Initial value problems by Laplace transform method.	1
2.5	Solution of Differential equations, Initial value problems by Laplace transform method (Continued).	1
2.6	Unit step function Second shifting theorem	1
2.7	Unit step function Second shifting theorem (Continued)	1
2.8	Convolution and related problems	1
	MODULE III	
3.1	Fourier series, Euler formulas.	1
3.2	Fourier series, Euler formulas (Continued).	1
3.3	Convergence of Fourier series (Dirichlet's conditions).	1
3.4	Half-range sine and cosine series.	1
3.5	Half-range cosine series.	1
3.6	Fourier Cosine integrals	1
3.7	Fourier Sine integrals	1
3.8	Fourier cosine transform	1
3.9	Fourier sine transform	1
3.10	Fourier transforms and its inverse transforms, basic properties.	1
	MODULE IV	
	Partial differential equations, Formation of partial differential	
4.1	equations –elimination of arbitrary constants.	1
4.2	Formation of partial differential equations —elimination of arbitrary functions	1
4.3	Solutions of partial differential equations, Equations solvable by direct integration,	1
4.4	Linear equations of the first order- Lagrange's linear equation	1

4.5	Linear equations of the first order- Lagrange's linear equation(continued)	1
4.6	Linear equations of the first order- Lagrange's linear equation(continued)	1
4.7	Boundary value problems, Method of separation of variables.	1
4.8	Boundary value problems, Method of separation of variables (Continued).	1
	MODULE V	
5.1	One-dimensional wave equation- vibrations of a stretched string, derivation,	1
5.2	Solution of wave equation using the method of separation of variables.	1
5.3	Solution of wave equation using the method of separation of variables.	1
5.4	Fourier series solution of boundary value problems involving wave equation.	1
5.5	Fourier series solution of boundary value problems involving wave equation.	1
5.6	One dimensional heat equation, derivation.	1
5.7	Solution of the heat equation, using the method of separation of variables.	1
5.8	Solution of the heat equation, using the method of separation of Variables (Continued).	1
5.9	Fourier series solutions of boundary value problems involving heat equation	1
5.10	Fourier series solutions of boundary value problems involving heat equation (Continued).	1

LESSON PLAN FOR LAB COMPONENT

No.	Topic	No. of Hours	Experiment
1	Basics for solving ODE	2	Basic Integration, differentiation, arithmetic operations, matrix
2	Solution Curves of ODE	1	operations and plotting solution curves of ODE using MATLAB/Scilab.
3	Solution of ODE using Simple Integrals	3	Find solutions of differential equations using simple integrals.
4	Analytic Solution of ODE	2	Evaluating analytic solutions of ODE and apply them to solve engineering problems
5	Laplace Transforms	3	Evaluating Laplace transforms of different functions.
6.	Inverse Laplace Transforms	3	Evaluating inverse Laplace transforms of different functions.
7.	Heaviside functions, Dirac delta function, and Ramp function.	3	Laplace transforms of Heaviside functions, Dirac delta function, and ramp function.
8.	Applications of Laplace Transform	2	Solving ODE using Laplace transforms.
9.	Fourier Series	2	Evaluating Fourier series of different functions.
10.	Fourier Transforms	2	Evaluating Fourier transforms of different functions.

	CO Assessment Questions										
1	 Solve y" - y = 0 for the initial conditions y(0) = 1, y'(0) = -1. Then change the initial conditions to y(0) = 1.001, y'(0) = -0.999 and explain why this small change of 0.001 causes a larger change later. Sketch the graph of the solution in both cases using any Mathematical software and comment. Find the current I(t) in an RLC-circuit with R = 11Ω (ohms), L = 0.1H (henry), C = 10⁻² F (farad), which is connected to a source of EMF E(t) = 110sin (60 · 2πt) = 110sin 377t (hence 60 Hz = 60cycles/sec, the usual in the U.S. and Canada; in Europe it would be 220 V and 50 Hz). Assume that current and capacitor charge are 0 when t = 0. 										

	 Solve the differential equation of y"' - 3y" + 3y' - y = ex - x - 1. Team Work: A 10-kg mass is attached to a spring having a spring constant of 140 N m. The mass is started in motion from the equilibrium position with an initial velocity of 1 m sec in the upward direction and with an applied external force given by sin t (in newtons). The mass is in a viscous medium with a coefficient of resistance equal to 90 N-sec m. Formulate an initial value problem that models the given system; solve the model and interpret the results. Also include MATLAB code for solving ODE. Prepare a short report on the problem highlighting the observations you made and interpretation of the results.
2	 Using convolution, determine the response of the damped mass-spring system modeled by y" + 3y' + 2y = r(t), r(t) = 1 if 1 < t < 2 and 0 otherwise, y(0) = y'(0) = 0. Solve differential equation 9y" + 6y' + y = 0,y(0) = 3,y'(0) = 1 using Laplace transforms. Use any mathematical software find the solution and compare the solutions. Team Work: Find at least two applications of Laplace transforms in the engineering domain. Prepare a short report and a presentation of the same.
3	 Find Fourier cosine transform and sine transform of any function. Write a short report on ways of obtaining these transforms, with illustrations by examples of your own. Find the Fourier integral representation of function defined by f(x) = e^{-x} for x > 0 and f(x) = 0 for x < 0. Team Work: Find the Fourier series of the function obtained by passing the voltage v(t) = V₀ cos 100πt through a half-wave rectifier that clips the negative half-waves. (a) Write a program for obtaining partial sum of the Fourier series so obtained. (b) Choose the first 5 or more partial sums until they approximate the given function reasonably well. Compare and comment.
4	 Solve the Lagrange linear equation 3z = xp + yq and sketch the graph of the solution using any Mathematical software. Find a partial differential equation of all spheres with fixed radius whose centers lie on the xy plane. Team Work: Identify an application-oriented problem using partial differential equations from your domain and its solution. Give a PPT illustrating the relevance of the problem
5	 A tightly stretched violin string of length L and fixed at both ends is plucked at x = L/3 and assumes initially the shape of a triangle of height h. Find the displacement function u(x,t) at any distance x and at any time t after the strix is released from rest. Draw the graph of u(x,t) using any mathematical software. Find the temperature u(x,t) in a laterally insulated copper bar 80 cm long if the initial temperature is 100sin (πx/80)°C and the ends are kept

- at 0°C. How long will it take for the maximum temperature in the bar to drop to 50°C? First guess, then calculate. Physical data for copper: density 8.92 g/cm³, specific heat 0.092cal/(g°C), thermal conductivity 0.95cal/(cmsec°C).
- 3. **Team Work:** Identify any two applications of heat and wave equations in engineering domain. Prepare a report and make a short video presentation.

2	3PYP202	ENGINEERING PHYSICS	L	T	P	J	s	С	Year of Introduction
251 11 202	(FOR NON-CIRCUIT BRANCHES)	2	1	2	0	4	4	2023	

Preamble: Enable the students to enhance the fundamental knowledge in physics and its applications relevant to various streams of Engineering and Technology. The topics like Oscillations and Wave Motion, Wave Optics, Quantum Mechanics and Nanophysics for Engineers, Introduction to Electromagnetic Theory, Lasers and Acoustics are covered in the syllabus. This helps the learners to explore the advanced concepts in physics and to do interdisciplinary research.

Prerequisite: Higher secondary level Physics, Mathematics course on vector calculus, differential equations and linear algebra.

Course Outcomes: After the completion of the course the student will be able to										
CO 1	Categorize oscillations by computing the characteristics of mechanical and electrical oscillators. [Apply level]									
CO 2	Apply the concept of interference and diffraction for Determination of wavelength									

- of unknown sources. [Apply level]

 Apply the basic principles of Quantum Mechanics by determining the energy Eigen
- values and Eigen functions of a particle in a box. [Apply level]
- CO 4 Apply Maxwell's equations in estimating the speed of light. [Apply level]
- **co** 5 Use low power lasers by doing optical and fiber optical experiments. [Apply level]

CO - PO MAPPING

СО	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12
CO 1	✓	V	1	VIII	✓	83		✓	✓	✓	11	✓
CO 2	✓	✓	2	Mili	✓	300	W.	✓	✓	4	1	✓
со з	✓	✓	D	1	✓	20			65	11	-	✓
CO 4	✓		1	1	-		_	3.8	1	1		
CO 5	✓		1	1	Q	UH	0	V	√	✓		

Assessment Pattern for Theory component

Bloom's Category	Continu	End Semester			
2.00m b category	Test 1 Test 2 Other tools		Examination		
Remember	✓	✓	✓	✓	
Understand	✓	✓	✓	✓	
Apply	✓	✓	✓	✓	
Analyse			✓		

Evaluate				✓	·				
Create				✓	•				
	Assessm	ent Patte	ern for La	b compor	nent				
Plaam's C	204000			ontinuo	ıs Asses:	sment To	ols		
Bloom's C	alegory		C1	ass work		Test	1		
Remember									
Understand				✓		✓			
Apply				✓		✓			
Analyse		-		✓		✓			
Evaluate	-		_	✓					
Create	1	AI	3 67	√					
		Mark Dist	ribution	of CIA					
100		T	Theory [L- T]			Practical [P]			
Course Structure [L-T-P-J]	Attendance	Assignment	Test-1	Test-2	Class work	Lab Exam	Total Marks		
2-1-2-0	5	10	10	10	15	10	60		
1/2/	CN	Total Mar	ks distrib	ution	1 1	17	1		
Total Marks	CIA (M	arks)	ESI	(Marks)	1	ESE Duration			
100	60		4	40 2.5 h					

PATTERN	PART A	PART B	ESE Marks
PATTERN 2		2 questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 2 sub divisions. Each question carries 8 marks. Marks: (5x 8 = 40 marks) Time: 2.5 hours	40
,	Total Marks: 0	Total Marks: [5x8 = 40 marks]	

SYLLABUS

MODULE I: Oscillations and Wave Motion (7 hours)

Simple harmonic motion, damped and forced simple harmonic oscillator

Damped harmonic oscillator: derivation of equation of motion and its solution, under damped oscillators; energy decay in damped harmonic oscillator, Quality factor (qualitative)- Forced harmonic oscillator: equation of motion and its solution (No derivation), Amplitude resonance - Electrical analogy of mechanical oscillators - Numerical problems.

Transverse waves in one dimension

Transverse and Longitudinal waves - Transverse waves on a stretched string; the wave equation on a string, derivation for the velocity and frequency of transverse vibrations on a stretched string- Numerical problems.

MODULE II: Wave Optics (7 hours)

Interference of light by amplitude splitting

Interference of reflected light in thin films; Interference in thin films (Cosine law); Derivation of the conditions of constructive and destructive Interference - Air Wedge; Determination of thickness of a thin wire - Antireflection coatings - Numerical problems.

Diffraction of light

Fresnel and Fraunhofer classes of diffraction - Diffraction grating -Grating equation - Rayleigh's criterion for limit of resolution - Resolving power of a grating with expression (no derivation), Comparison of interference and diffraction - Numerical problems.

MODULE III: Quantum Mechanics and Nanophysics for Engineers (8 hours)

Wave nature of particles and the Schrodinger equation

Wave-Particle dualism; de Broglie hypothesis, de-Broglie wavelength – Wave function; Admissibility conditions, Physical significance, Probability density, Normalization condition - Time dependent Schrödinger wave equation - Time independent Schrödinger wave equation

Applying the Schrodinger equation-

Particle in a one-dimensional box; Energy Eigen values and normalized wave function - Numerical problems.

Nanophysics

Quantum confinement in one dimension, two dimensions and three dimensions-Quantum well, Quantum wires and Quantum dots, Properties of nanomaterialsmechanical, electrical and optical, Applications of nanotechnology in Industry. (Qualitative ideas)

MODULE IV: Introduction to Electromagnetic Theory (7 hours)

Physics of gradient, divergence and curl – Gauss's divergence theorem and Stoke's theorem- Equation of continuity, Deduction of Maxwell's equations in vacuum - Electromagnetic waves: Electromagnetic wave equation in free space, velocity of Electromagnetic waves in free space, Poynting's theorem (Qualitative) - Numerical problems.

MODULE V: Laser & Acoustics (7 hours)

Laser -Properties of laser - Absorption and Emission of radiation - Spontaneous and Stimulated emission of radiation - population inversion - metastable states - Basic components of laser; active medium, pumping mechanism, optical resonant cavity - Construction and working of Ruby laser - Applications of lasers in Engineering (qualitative ideas).

Acoustics - Characteristics of Sound-Pitch or frequency-Loudness or Intensity - Quality or timbre, Absorption coefficient, Reverberation & Echo - Reverberation time - Sabine's formula (no derivation), Factors affecting architectural acoustics and their remedies.

Text books

- 1. M.N.Avadhanulu, P.G.Kshirsagar, TVS Arun Murthy "A Text book of Engineering Physics", S.Chand & Co., Revised Edition 2019.
- 2. H.K.Malik , A.K. Singh, "Engineering Physics" McGraw Hill Education, Second Edition 2017

Reference books

- 1. Arthur Beiser, "Concepts of Modern Physics", Tata McGraw Hill Publications, 6th Edition 2003.
- 2. D.K. Bhattacharya, Poonam Tandon, "Engineering Physics", Oxford University Press, 2015.
- 3. Md.N.Khan & S.Panigrahi "Principles of Engineering Physics 1&2", Cambridge University Press, 2016.
- 4. Aruldhas G., "Engineering Physics", PHI Pvt. Ltd., 2015.
- 5. Ajoy Ghatak, "Optics", Mc Graw Hill Education, Sixth Edition, 2017.
- 6. T. Pradeep, "Nano: The Essentials", McGraw Hill India Ltd, 2007.
- 7. Premlet B., "Advanced Engineering Physics", Phasor Books, 11 th edition, 2021.
- 8. I. Dominic and. A. Nahari, "A Text Book of Engineering physics", Owl Books Publishers, Revised edition, 2016.
- 9. H.D Young and R.A Freedman, University Physics with Modern Physics 2020, 15th Edition, Pearson, USA.
- 10. Griffiths "Introduction to Electrodynamics" 4th Edition, Pearson.

No.		No.of Hours
		[36]
	MODULE 1 Oscillations and Wave Motion (7 hours)	
	Simple harmonic motion, damped and forced simple harmonic oscillator.	
1.1	Damped harmonic oscillator: derivation of equation of motion and its solution, under damped oscillators; energy decay in damped harmonic oscillator,	1
1.2	Quality factor (qualitative), Numerical problems.	1
1.3	Forced harmonic oscillator: equation of motion and its solution (No derivation).	1
1.4	Amplitude resonance, Numerical problems.	1
1.5	Electrical analogy of mechanical oscillators - Numerical problems.	1
1.6	Transverse waves in one dimension Transverse and Longitudinal waves - Transverse waves on a stretched string; the wave equation on a string, derivation for the velocity and frequency of transverse vibrations on a stretched string.	1
1.7	Numerical problems.	1
	MODULE II Wave Optics (7 hours)	/
	Interference of light by amplitude splitting	
2.1	Interference of reflected light in thin films; Interference in thin films (Cosine law).	1
2.2	Derivation of the conditions of constructive and destructive Interference, Numerical problems.	1
2.3	Air Wedge; Determination of thickness of a thin wire.	1
2.4	Antireflection coatings - Numerical problems.	1
	Diffraction of light	
2.5	Fresnel and Fraunhofer classes of diffraction - Diffraction grating - Grating equation.	1
2.6	Rayleigh's criterion for limit of resolution - Resolving power of a grating with expression (no derivation).	1

2.7	Comparison of interference and diffraction - Numerical problems.	1
4.1	•	1
	MODULE III Quantum Mechanics and Nanophysics for Engineers (8 hours)	
	Wave nature of particles and the Schrodinger equation	
3.1	Wave-Particle dualism; de Broglie hypothesis, de-Broglie wavelength, Numerical problems.	1
3.2	Wave function; Admissibility conditions, Physical significance, Probability density, Normalization condition.	1
3.3	Time dependent Schrödinger wave equation.	1
3.4	Time independent Schrödinger wave equation.	1
3.5	Applying the Schrodinger equation- Particle in a one-dimensional box; Energy Eigen values and normalized wave function.	1
3.6	Numerical problems.	1
3.7	Nanophysics Quantum confinement in one dimension, two dimensions and three dimensions-Quantum well, Quantum wires and Quantum dots.	1
3.8	Properties of nanomaterials-mechanical, electrical and optical, Applications of nanotechnology in Industry. (Qualitative ideas)	1
	MODULE IV	1.5
4.1	Introduction to Electromagnetic Theory (7 hours) Physics of gradient, divergence and curl, Numerical problems.	1
4.2	Gauss's divergence theorem and Stoke's theorem, Equation of continuity.	1
4.3	Deduction of Maxwell's equations in vacuum (first two equations)	1
4.4	Deduction of Maxwell's equations in vacuum (third and fourth equations)	1
4 5	Electromagnetic waves: Electromagnetic wave equation in free space.	1
4.5		
4.6	Velocity of Electromagnetic waves in free space, Numerical problems.	1
	Velocity of Electromagnetic waves in free space, Numerical problems. Poynting's theorem (Qualitative) - Numerical problems.	1
4.6		
4.6	Poynting's theorem (Qualitative) - Numerical problems.	

5.2	Basic components of laser; active medium, pumping mechanism, optical resonant cavity.	1
5.3	Construction and working of Ruby laser.	1
5.4	Applications of lasers in Engineering (qualitative ideas).	1
5.5	Acoustics - Characteristics of Sound-Pitch or frequency-Loudness or Intensity - Quality or timbre	1
5.6	Absorption coefficient, Reverberation & Echo - Reverberation time - Sabine's formula (no derivation), Numerical problems	1
5.7	Factors affecting architectural acoustics and their remedies,	1

LESSON PLAN FOR LAB COMPONENT

No.	Topic	No. of Hours	Experiment
1	Oscillations	4	 Resonance phenomenon in mechanical oscillators. LCR Circuit – Forced and damped harmonic oscillations.
2	Waves	4	 Melde's string apparatus- Measurement of frequency in the transverse mode. Melde's string apparatus- Measurement of frequency in the longitudinal mode.
3	Interference	4	 Wave length measurement of a monochromatic source of light using Newton's Rings method. Determination of diameter of a thin wire or thickness of a thin strip of paper using air wedge method.
4	Diffraction	4	 Determination of resolving power of a plane transmission grating. Determination of the wavelength of a laser using diffraction grating.
5	Quantum Mechanics	4	 Determination of the particle size of lycopodium powder. Numerical demonstration of the discrete energy levels and wavefunctions using Schrodinger equation. (e.g., Particle in a box problem)

6	Electromagnetic Theory	4	 Determine the characteristics of EM waves using Hertz experiment. Determination of Numerical aperture of optic fiber using Laser.
7	Lasers	4	 Determination of the wavelength of any standard laser using diffraction grating. Determination of Numerical aperture of an optic fiber using Laser.

(Any 6 experiments to be completed)

	CO Assessment Questions
1	 Compute the frequency and Quality factor for an LCR circuit with L = 2mH, C = 5μF and R = 0.2Ω. Frame any five numerical problems on oscillations with different difficulty levels and solve them. Identify the applications of the theory of oscillations in the field of engineering and prepare a Power Point presentation on any one system which failed in applying the theory of damped or forced oscillation. (Eg: Failed due to damping, resonance etc.) Determine experimentally the characteristics of an LCR oscillator.
2	 Light of wavelength 6000Ao falls normally on a wedge-shaped film. The two plates touch at one and are separated at 10 cm from that end by a wire. If the bandwidth of interference pattern is 0.05mm, find the diameter of the wire. Design any three numerical problems on Interference and implement these using any one programming language and submit the source code and output. Write a brief report on the limitations of any one optical instrument used in engineering systems.
3	 Determine the wavelength of a laser source using diffraction grating. Apply the appropriate Schrodinger equation and compute the first three energy eigen values and wave functions of a particle trapped inside a well. Make a video demonstrating any one Engineering System in which classical physics failed to give a perfect design and was designed with
4	 the aid of Quantum Mechanics. 1) Determine the velocity of Electromagnetic waves in free space using Maxwell's equations. 2) Create a quiz based on numerical problems from electromagnetic theory using an appropriate tool.
5	 Determine the wavelength of a standard laser source using diffraction grating arrangement. Determine experimentally the NA of an optic fibre cable.

23ESP204	PROBLEM SOLVING AND	L	T	P	J	s	С	Year of Introduction
20201201	PROGRAMMING	3	0	2	0	5	4	2023

Preamble: This course enables students to acquire problem solving and programming skills to solve computational problems. This course covers Basics of Computer Hardware and Software, C Programming basics, arrays, strings, structure, union, functions, pointers and files. This course helps the learners to think logically, computationally and creatively to solve real world problems.

creative					-	icarrici	5 10 11.	108	icarry,	compu	aciona	ily alla	
Prereq	uisite:	Nil											
Course	Outco	omes: A	After th	e comp	letion	of the c	ourse	the stu	dent w	rill be al	ole to		
CO 1	appropriate tools. [appropriate tools.]												
CO 2	Imple	ment co	onditio	nal bra	nching	, iterati	on and	l recurs	sion. [U	Jnderst	and lev	el]	
со з	programs. [Onderstand lever]												
CO 4	Decompose a problem into functions and synthesize a complete program using divide and conquer approach. [Understand level]												
CO 5		op read rstand		progr	ams w	ith file	s for r	eading	input	and st	oring (output	
CO 6		and ex rstand		the p		1		eting s	yntax	and l	ogical	errors	
		A				PO MAI				12	7//	2010	
СО	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	
CO 1	V	V .	20	-40	√	384		✓	1	5/	1	V	
CO 2	✓	V	PA	1		41	-	1	(0)	10		√	
со з	✓	1	11	1		-	_	1	1			✓	
CO 4	✓	✓	-	-	\mathbb{Q}	UL	_0	\	and the same			✓	
CO 5	✓	✓		-				✓	5			✓	
CO 6	✓	✓						✓				✓	
			Asses	sment	Patter	rn for '	heory	comp	onent	1	1		
Bloo	m's Ca	itegory	7	Cont	inuous	s Asses		t Tools			Semes		
				Test1		Test 2		ther to	ools	Examination			
Remen	nber			✓		✓		✓			✓		

Apply		✓	✓	✓	1	✓		
Analyse				✓				
Evaluate				✓	,			
Create				✓	,			
	Ass	essment l	Pattern for	Lab comp	onent			
Bloor	n's Catego	ry	С	Continuoı lass work	ıs Assess	sment Too Test		
Remember		-25						
Understand		-		✓		✓		
Apply			0.0	✓		✓		
Analyse	1	V V	911.0	✓	2	✓		
Evaluate	11/2	200	-	✓	(A)			
Create	110	3		✓	Cls.	11.11		
- /	10,	Mark	Distribution	on of CIA	-16	11		
100	1381	1:00	Theory [L	- T]	Pract	ical [P]		
Course Structu [L-T-P-J]	Attendance	Assignment	Test-1	Test-2	Class work	Lab Exam	Total Marks	
3-0-2-0	5	15	10	10	10	10	60	
1 2		Total	Marks dis	tribution	1	Time		
Total Marks	s	CIA (Mark	s)	ESE (Mark	(s)	ESE Du	ation	
100	4	60	384	40		2.5 Ho	2.5 Hours	
End Semester E	Examination	n [ESE]: P	attern	- dela	1	35/1	f	
PATTERN	PAR'	301		PART B	-/-	ESE	Marks	
	16	1/1	each mod question	ns will be lule, out o should be estion car	1 ed. a			
PATTERN 2			maximum Each ques	of 2 sub di stion carries x 8 = 40 ma hours	s 8 marks		40	

SYLLABUS

MODULE I: Basics of Computer Hardware and Software (7 hours)

Basics of Computer Architecture: Processor, Memory, Input& Output devices. Application Software & System software: Compilers, interpreters, High level and low-level languages, Introduction to structured approach to programming, Flow chart, Algorithms, Pseudo code (bubble sort, linear search - algorithms and pseudocode).

MODULE II: Program Basics (8 hours)

Basic structure of C program: Character set, Tokens, Identifiers in C, Variables and Data Types, Constants, Console IO Operations, printf and scanf. Operators and Expressions: Expressions and Arithmetic Operators, Relational and Logical Operators, Conditional operator, size of operator, Assignment operators and Bitwise Operators, Operators Precedence. Control Flow Statements: If Statement, Switch Statement, Unconditional Branching using goto statement, While Loop, Do While Loop, For Loop, Break and Continue statements. (Simple programs covering control flow).

MODULE III: Arrays and strings (7 hours)

Arrays Declaration and Initialization, 1-Dimensional Array, 2-Dimensional Array. String processing: In built String handling functions (strlen, strcpy, strcat and strcmp, puts, gets). Linear search program, bubble sort program, simple programs covering arrays and strings.

MODULE IV: Working with functions (7 hours)

Introduction to modular programming, writing functions, formal parameters, actual parameters, Pass by Value, Recursion, Arrays as Function Parameters structure, union, Storage Classes, Scope and life time of variables, simple programs using functions.

MODULE V: Pointers and Files (7 hours)

Basics of Pointer: Declaring pointers, accessing data though pointers, NULL pointer, array access using pointers, pass by reference effect. File Operations: open, close, read, write, append. Sequential access and random access to files: In built file handling functions (rewind(), fseek(), ftell(), feof(), fread(), fwrite()), simple programs covering pointers and files.

Text books

- 1. Schaum's Outline of Programming with C, Byron Gottfried, Jitender Chhabra Tata McGraw Hill, 2005.
- 2. Programming in ANSI C, E. Balagurusamy, Mcgraw Hill, 2019.
- 3. Programming in C, Asok N Kamthane, Pearson Education, 2015.
- 4. Computer Fundamentals, Anita Goel, Pearson Education.

References

1. Computer fundamentals and Programming in C, Anita Goel and Ajay Mittal, Pearson Education, 2016.

- 2. The C Programming Language, Brian W. Kernighan and Dennis M. Ritchie, Pearson Education, 2015
- 3. Computer Basics and Programming in C, Rajaraman V, PHI, 2007.
- 4. Let us C, Yashavant Kanetkar, BPB Publications, 2016.

NPTEL/SWAYAM Courses

- 1. Introduction To Programming In C, Prof. Satyadev Nandakumar IIT Kanpur.
- 2. Problem Solving Through Programming In C, Prof. Anupam Basu IIT Kharagpur.

	COURSE CONTENTS AND LECTURE SCHEDULE	
No.	ARCOL	No. of Hours
	MODULE 1	
1.1	Basics of Computer Architecture: Processor	1 Hour
1.2	Basics of Computer Architecture: Memory	1 Hour
1.3	Basics of Computer Architecture: Input& Output devices	1 Hour
1.4	Application Software & System software: Compilers, interpreters, High level and low-level languages	1 Hour
1.5	Introduction to structured approach to programming, Flow chart	1 Hour
1.6	Algorithms, Pseudo code	1 Hour
1.7	Bubble sort, linear search - algorithms and pseudocode	1 Hour
	MODULE II	7
2.1	Basic structure of C program: Character set, Tokens, Identifiers in C	1 Hour
2.2	Basic structure of C program: Variables and Data Types, Constants, Console IO Operations, printf and scanf	1 Hour
2.3	Operators and Expressions: Expressions and Arithmetic Operators, Relational and Logical Operators.	1 Hour
2.4	Operators and Expressions: Conditional operator, size of operator, Assignment operators and Bitwise Operators. Operators Precedence	1 Hour
2.5	Control Flow Statements: If Statement, Unconditional Branching using goto statement. (Simple programs covering control flow)	1 Hour
2.6	Control Flow Statements: Switch Statement, Break statement. (Simple programs covering control flow)	1 Hour
2.7	Control Flow Statements: While Loop, Do While Loop (Simple programs covering control flow)	1 Hour

2.8	Control Flow Statements: For Loop, Continue statement. (Simple programs covering control flow)	1 Hour							
	MODULE III								
3.1	Arrays Declaration and Initialization, 1-Dimensional Array, Simple programs covering 1 – Dimensional Array	1 Hour							
3.2	programs covering 2 – Dimensional Array								
3.3	Arrays -2- Programs covering 1 and 2 – Dimensional Arrays	1 Hour							
3.4	String processing: In built String handling functions (strlen, strcpy, strcat and strcmp, puts, gets)	1 Hour							
3.5	Linear search program- Implementation	1 Hour							
3.6	Bubble sort program- Implementation	1 Hour							
3.7	Simple programs covering arrays and strings	1 Hour							
	MODULE IV	V							
4.1	Introduction to modular programming - writing functions	1 Hour							
4.2	Writing functions with formal parameters and actual parameters	1 Hour							
4.3	Writing functions with Pass by Value and Recursion	1 Hour							
4.4	Writing functions with arrays as Function Parameters	1 Hour							
4.5	Structure and union	1 Hour							
4.6	Storage Classes, Scope and life time of variables	1 Hour							
4.7	Simple programs using functions	1 Hour							
	MODULE V								
5.1	Basics of Pointers: declaring pointers	1 Hour							
5.2	Pointers: accessing data though pointers, NULL pointer, simple programs	1 Hour							
5.3	Pointers: Array access using pointers, pass by reference effect, simple programs	1 Hour							
5.4	File Operations: open, close, read, write, append	1 Hour							
5.5	Programs using file operations	1 Hour							
5.6	Sequential access and random access to files: In built file handling functions (rewind(), fseek(), ftell(), feof(), fread(), fwrite()),	1 Hour							
5.7	Sequential access and random access to files: Simple programs	1 Hour							

LESSON PLAN FOR LAB COMPONENT

No.	Topic	No. of Hours	Experiment
1	Basics of Computer Architecture: Processor, Memory, Input& Output devices	1	Familiarization of Hardware Components of a Computer
2	Application Software & System software: Compilers, interpreters, High level and low-level languages	1	Familiarization of Linux environment – How to do Programming in C with Linux
3	Introduction to structured approach to programming, Flow chart	2	a) Familiarization of Tools - Flowgorithm and Raptor.b) Develop flowcharts and algorithms for a set of given problems
4	Basic structure of C program: Character set, Tokens, Identifiers in C, Variables and Data Types, Constants, Console IO Operations, printf and scanf		Familiarization of console I/O and operators in C i) Display "Hello World" ii) Read two numbers, add them and display their sum iii) Read the radius of a circle, calculate its area and display it iv) Evaluate the arithmetic expression ((a -b / c * d + e) * (f +g)) and display its solution. Read the values of the variables from the user through console.
5	Operators and Expressions: Expressions and Arithmetic Operators, Relational and Logical Operators, Conditional operator, size of operator, Assignment operators and Bitwise Operators. Operators Precedence	UIL	i) Read 3 integer values and find the largest among them.ii) Read a Natural Number and check whether the number is prime or not
6	Control Flow Statements: If Statement, Switch Statement, Unconditional Branching using goto statement, While Loop, Do While Loop, For Loop, Break and Continue statements.	1	iii) Read a Natural Number and check whether the number is Armstrong or not

	Arrays Declaration and Initialization, 1-Dimensional Array, 2-Dimensional Array	1	i) Read n integers, store them in an array and find their sum and average ii) Read n integers store them in an
7	Linear search program, bubble sort program	1	 ii) Read n integers, store them in an array and search for an element in the array using an algorithm for Linear Search iii) Read n integers, store them in an array and sort the elements in the array using Bubble Sort algorithm
8	String processing: In built String handling functions (strlen, strcpy, strcat and strcmp, puts, gets)	2	 i) Read a string (word), store it in an array and check whether it is a palindrome word or not. ii) Read two strings (each one ending with a \$ symbol), store them in arrays and concatenate them without using library functions iii) Read a string (ending with a \$ symbol), store it in an array and count the number of vowels, consonants and spaces in it.
9	Introduction to modular programming, writing functions, formal parameters, actual parameters	2	 i) Find the factorial of a given Natural Number n using recursive and non- recursive functions ii) Read a string (word), store it in an array and obtain its reverse by
	Pass by Value, Recursion, Arrays as Function Parameters	2	using a user defined function. iii) Write a menu driven program for performing matrix addition, multiplication and finding the transpose. Use functions to a) read a matrix, b) find the sum of two matrices, c) find the product of two matrices, d) find the transpose of a matrix and e) display a matrix.
10	Structure, union, Storage Classes, Scope and life time of variables, simple programs using functions	2	 i) Read two input each representing the distances between two points in the Euclidean space, store these in structure variables and add the two distance values. ii) Using structure, read and print data of n employees (Name, Employee Id and Salary) iii) Declare a union containing 5 string

			variables (Name, House Name, City Name, State and Pin code) each with a length of C_SIZE (user defined constant). Then, read and display the address of a person using a variable of the union.
11	Basics of Pointers: declaring pointers, accessing data though pointers, NULL pointer, array access using pointers, pass by reference effect	3	 i) Do the following using pointers a) add two numbers b) swap two numbers using a user defined function ii) Input and print the elements of an array using pointers iii) Compute sum of the elements stored in an array using pointers and user defined function.
12	File Operations: open, close, read, write, append	2	i) Create a file and perform the followinga) Write data to the file
13	Sequential access and random access to files: In built file handling functions (rewind(), fseek(), ftell(), feof(), fread(), fwrite())	2	 b) Read the data in a given file & display the file content on console c) append new data and display on console ii) Open a text input file and count number of characters, words and lines in it; and store the results in an output file.

	CO Assessment Questions
1	Write an algorithm and draw flowchart (using Flowgorithm/Raptor) a) To find the roots of a quadratic equation b) To check whether largest of 3 natural numbers is prime or not c) To sort a set of numbers
2	 Develop a C program a) To process a set of n natural numbers and to find the largest even number and smallest odd number from the given set of numbers. The program should not use division and modulus operators. b) To find the value of a mathematical function f which is defined as follows. f(n) = n! / (sum of factors of n), if n is not prime and f(n) = n! / (sum of digits of n), if n is prime. c) To evaluate the series x - x²/2! + x³/3! n terms, for a given values of x and n.
3	Write a C program

	a) To sort a set of n integers and to find the number of unique numbers
	and the number of repeated numbers in the given set of numbers. Use
	a function which takes an integer array of n elements, sorts the array
	using the Bubble Sorting Technique and returns the number of unique
	numbers and the number of repeated numbers in the given array.
	b) To read and multiply two matrices using pointers
	c) To process the marks obtained by n students of a class and prepare
	their rank list based on the sum of the marks obtained. There are 3
	subjects for which examinations are conducted and the third subject is
	an elective where a student is allowed to take any one of the two courses
	offered.
	Write a menu driven program to
	a) Read a matrix, display a matrix, add two matrices, multiply two
4	matrices, check symmetry and transpose a matrix.
1	b) To read the details of a set of students, display the details of all
	students, sort the details based on roll number, search for a student
	using name
	Write a C program to
5	a) Process a text file and to print the Palindrome words into an output file.
3	b) Store the details of books in a library using a file and perform updation,
	deletion and insertion of a book from on the file based on title
6	
	Test and execute the above programs using a C Complier.

23ESP107/	TECHNICAL ENGLISH FOR	L	Т	P	J	s	С	Year of Introduction
23ESP207	ENGINEERS	2	0	2	0	4	3	2023

Preamble: This course enables the students to use the basic skills of communication such as reading, listening, writing and speaking. The topics like Use of Language in communication, Oral Presentation, Interview Skills, Formal Writing, Reading Comprehension and Listening skills are covered in this course. The course helps the learners to communicate with group, face interviews and prepare technical documents in an effective manner.

aocai	110110	m an	CHCCH	c man	iici.							
Prerec	quisite	: NIL			_							
Cours	e Out	comes:	After 1	the con	npletio	n of the	e cours	se the s	studen	t will be	e able 1	iΟ
CO 1		vocab	500	ınd lan	guage	skills i	n profe	essiona	l comn	nunicat	ion.	
CO 2	Der	nonstr	ate tecl	hnical	presen	tation	and sp	eaking	skills.	[Apply	level]	į.
соз	Mal	ke use	of the	intervie	ew skil	ls in re	al life s	situatio	n. [Ap	ply leve	1]	\ :
CO 4	Cre	ate pro	ofession	nal and	techn	ical do	cumen	ts prec	isely. [Apply 1	evel]	1
CO 5	Use	readir	ng and	listenii	ng tech	niques	in an	effectiv	e way	. [Apply	level]	M.
		31		- 11	CO - 1	PO MA	PPING	Mo			0	11
со	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12
CO 1	1	-	V	100		114		✓	✓	✓	1771	√
CO 2	1	10	1	1.0		100		✓/	✓	✓	77/	✓
со з	- 7	1	3	N	1	180	/402	✓	✓	✓	1/1	✓
CO 4		1	(B	7	-	3	1	✓	1	✓	1	√
CO 5			1	41	-			✓	✓	✓		✓

Assessment Pattern for Theory component

Bloom's Category	Continu	ous Assess	End Semester	
	Test 1	Test 2	Other tools	Examination
Remember	-	✓	✓	✓
Understand	-	✓	✓	✓
Apply	-	✓	✓	✓
Analyse			✓	

Evaluate

Create					✓			
	A	ssessm	ent Patte	rn for La	b compor	nent		
	• • •			Con	tinuous A	Assessme	nt Tools	
Bloom	egory		Class v	work		Test1		
Remember								
Understand				✓			✓	
Apply				✓			✓	
Analyse			_	✓			✓	
Evaluate				✓				
Create			NA	✓	0//	1		
		М	ark Distr	ibution o	f CIA	8		
- 5	1/	3	T	heory [L-	Tl	Pract	ical [P]	
/	13	φ	_		_	4.77.	110	S
Course Struc [L-T-P-J]	ture	Attendance	Assignment	Test-1	Test-2	Class work	Lab Exam/ Practice	Total Marks
2-0-2-0		5	15		10	20	10	60
11	11		rotal Mar	ks distril	oution	E_ \	151	1
Total Marks	4/	CIA (Ma	rks)	ESE (I	Marks)	E	SE Duratio	n
100	(0)	60	40 2				2.5 Hours	
1	Er	nd Seme	ester Exa	mination	[ESE]: Pa	ttern	1/	
PATTERN	PAR	RT A	1	PA	RT B	(9)	ESE Ma	arks
PATTERN 2			module, should l can hav divisions Each qu Marks: (2 questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 2 sub divisions. Each question carries 8 marks. Marks: (5x 8 = 40 marks) Time: 2.5 hours				
	Total M	larks: 0	Total Ma	rks: [5x8	= 40 marl	ksl		

SYLLABUS

MODULE I: Use of Language in communication

Significance of Technical communication- Technical vocabulary used in formal letters, emails, reports, misspelled words, synonyms, antonyms, and paraphrasing.

Grammar- Subject-verb agreement, reported speech, active-passive voice, use of adjectives and adverbs, prepositions.

MODULE II: Oral Presentation

Voice Modulation, tone, Intonation, pronunciation, presentation skills, public speaking skills, Types of presentations, the use of visuals in presentation, debate, G.D., brainstorming, body language, and audience analysis.

MODULE III: Interview Skills

Interview skills: Objectives and types of interviews, preparing for interview, interview etiquette, dress code, body language, online interview, panel interview, one-to-one interview, FAQ'S related to job interviews, and answering strategies.

MODULE IV: Formal Writing

Formal Writing: Letter- Formal, informal, and semi-formal. Email, Job application letters, C.V., Resume, and Biodata, minutes preparation, different types of reports, common errors in writing, use of sequence words, and Statement of purpose.

Reference styling, IEEE format, bibliography, analytical and issue-based essay writing, plagiarism.

MODULE V: Reading Comprehension and Listening skills

Reading, comprehension, and summarizing: Reading Styles, speed reading, critical reading, reading and comprehending longer and shorter technical articles from journals and newspapers, SQ3R method, PQRST method, identifying transitions of text, note taking.

Listening skills: Active and Passive listening, listening for general content, listening for specific information, developing effective listening skills, barriers to effective listening, listening to longer technical talks and classroom lectures, TED talks, taking notes while listening.

Text books / Reference books

- 1. Meenakshi Raman and Sangeetha Sharma, Technical Communication: Principles and Practice, 3rd edition, Oxford University Press, 2015
- 2. Anderson, P.V, Technical Communication, Thomas Wadsworth, Sixth edition, New Delhi, 2007
- 3. English for Engineers and Technologists (Combined edition, Vol,1 and 2), Orient Blackswann 2010
- 4. Seely, John, The Oxford Guide to Writing and Speaking, Oxford university

- Press, 1997
- 5. Ganguly, Anand, Success in Interview, RPH, Fifth edition, 2006
- 6. Effective Communication Skills. Kul Bhushan Kumar, Khanna Book Publishing, 2022.
- 7. Practical English Usage. Michael Swan. OUP. 1995.
- 8. Remedial English Grammar. F.T. Wood. Macmillan.2007
- 9. On Writing Well. William Zinsser. Harper Resource Book. 2001
- 10. Study Writing. Liz Hamp-Lyons and Ben Heasly. Cambridge University Press. 2006.
- 11. Communication Skills. Sanjay Kumar and Pushplata. Oxford University Press. 2011
- 12. Exercises in Spoken English. Parts. I-III. CIEFL, Hyderabad. Oxford University Press

40

NPTEL/SWAYAM Courses for reference:

- 1. English Language for Competitive Exams Prof. Aysha Iqbal IIT Madras
- 2. Technical English for Engineers Prof. Aysha Iqbal IITM

	COURSE CONTENTS AND LECTURE SCHEDUL	E	V.
No.	//2/ \L	E	No. of Hours [35]
	MODULE 1	10	8 Hrs
1.1	Introduction, misspelled words	15	1
1.2	Synonyms and antonyms	1177	1
1.3	Technical vocabulary in email and letters and reports	1001	1
1.4	Paraphrasing	30/1	1
1.5	Subject-verb agreement	-//	1
1.6	Reported Speech		1
1.7	Active and passive voice		1
1.8	Preposition, use of adjectives and adverbs		1
	MODULE II		6 Hrs
2.1	Presentation skills		1
2.2	Importance of voice modulation, tone, intonation		1
2.3	Use of visuals in presentation, public speaking skills		1
2.4	Debate and G.D – differences.		1
2.5	Body Language and audience analysis		1

2.6	Brainstorming	1
	MODULE III	6 Hrs
3.1	Objectives of Interview, types of Interviews	1
3.2	Preparation strategies for attending interview	1
3.3	Dress code and body language for interviews.	1
3.4	Interview Etiquettes	1
3.5	FAQs related to job interviews	1
3.6	Strategies for different types of interviews- Online interview, panel interview, one-to-one interview.	1
	MODULE IV	9 Hrs
4.1	Formal, informal, and semi-formal letters	1
4.2	Email Writing and etiquette	1
4.3	Application letter, email.	1
4.4	C.V, Resume, Biodata – introduction and differences	1
4.5	C.V, Resume, Biodata writing process	1
4.6	Minutes preparation	1
4.7	Types of reports, use of sequence words	1
4.8	Statement of purpose, referencing style, bibliography.	1
4.9	IEEE format, plagiarism, issue-based essay writing.	1
	MODULE V	6 Hrs
5.1	Reading Styles	1
5.2	Speed reading, critical reading	1
5.3	Comprehending longer and shorter technical articles from journals and newspaper	1
5.4	Reading methods, SQ3R and PQRST methods, identifying transitions in text	1
5.5	Active and Passive listening, Listening for general and specific content	1
5.6	Barriers to effective listening.	1

LESSON PLAN FOR LAB COMPONENT

No.	Topic	No. of Hours	Experiment
1	Difference between literary and technical writing style	1	Writing exercises for both creative and technical writing that highlight Grammatical and linguistic differences between two.
2	Presentation	3	Create and present a PPT based on a given topic.
3	Group Discussion	2	Group discussion and debate based on a given topic.
4	Voice modulation, tone, and intonation	LIP.	Analyze a given video presentations of speakers, technocrats, and management
5	Effects of body language in presentation and public speaking.		experts based on the concepts learned.
6	Interview Skills	1	Mock Panel Interview
7	Interview body language and etiquette	1 (Analyze the given videos of both mock/ original job interviews based on the concepts learned.
8	Report writing	1	Writing exercises for different types of reports.
10	Comprehension exercise	2	Comprehend articles from scientific journals.
	1121		Comprehend articles from newspapers.
11	Listening exercise – 1	1	Answering the Question / Note Making from TED talks.
12	Listening exercise – 2	1	Write the subtitles and lyrics from the English movie clips and songs provided

	CO Assessment Questions
	1. Find the word with the correct spelling from the following list
	a) Accommodate b) Acommodate c) Accomadate d) Acomodate
	2. Which word in the following list is closest to the meaning of the word
CO1	'gloomy'
	a) Happy b) Sad c) Enthralled d) elated.
	3. Select the most suitable preposition for the sentence from the following list
	I was born May (in / on / at)
	My friend lives Beach Road (in/on/at)

	1. What is the significance of body language in presentation?
	2. Explain the strategies to improve your Debate skills.
CO2	3. How important is visual aid for presentations?
	4. As a student who presented a slide presentation, how will you
	respond to a disturbed audience?
	1. Explain the significance of non-verbal communication in interviews.
	2. What are the differences that you will make while attending an online
	interview instead of an off line interview.
CO3	3. How will you politely respond to a question asked to you in an interview
	to which you don't know the answer?
	4. As a viewer of the mock interview conducted in the class, what were the
	do's and don'ts to be followed in an interview.
	1. What are the differences between a C.V., Resume and Biodata?
CO4	2. Write an email to the manager of ABC Technologies asking for an
	opportunity to be included in their internship program
	3. What are the different types of reports?
	1. What is critical reading? What are the advantages of critical reading over
C05	speed reading?
203	2. Write down the lyrics of the song as you hear it.
	3. Write a synopsis of the journal article that you just read.

23MCJ110 / 23MCJ210	IDEA LAB WORKSHOP	L	Т	P	J	s	С	Year of Introductio n
201100210		2	0	2	2	5	0	2023

Preamble: This course enables the learners to understand the concepts of design, development and documentation tools under various domains in engineering. The various topics covered in this course are concepts of Microcontroller Programming, PCB Designing and Prototyping, Modelling, Slicing, Cutting, Routing, and Documentation & version control Tools. This course helps the students to design and develop real life applications using multidisciplinary engineering aspects.

Prer	equisite: NIL
Cou	rse Outcomes: After the completion of the course the student will be able to
CO 1	Develop project using appropriate Microcontroller Programming languages. [Apply level]
CO 2	Develop product using PCB Design and Prototyping concepts. [Apply level]
CO 3	Create 2D and 3D models using appropriate tools. [Apply level]
CO 4	Create electronic documentation for the system/project using appropriate tools. [Apply level]
CO 5	Build useful and standalone system/ project with enclosures. [Apply level]

α	DO	74 F A	DDING
	- 2()	IVI A	PPING
	- 10	TATE	T T TI C

со	PO1	PO2	РО3	PO4	PO5	P06	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2
CO 1	1	✓	✓	✓	✓	1		✓	✓	- 1:	-	✓
CO 2	✓	✓	✓	✓	✓	√	5	✓	✓	1;	5/	✓
CO 3	✓	✓	✓	✓	✓	✓		✓	✓	lin	7/1	✓
CO 4	✓	✓	✓	✓	✓		/ASE	✓	*	✓	//	✓
CO 5	✓	√	✓	√	√	✓		√	√	3/		√

Assessment Pattern for Lab component

Pleam's Catogomy	Continuous Assessment Tools				
Bloom's Category	Class work	Test1			
Remember					
Understand	✓	✓			
Apply	✓	✓			
Analyse	✓	✓			
Evaluate	✓				
Create	✓				

Assessment Pattern for Project component

	Continu	ious Assessme	nt Tools	
Bloom's Category	Evaluation 1	Evaluation 2	Report	

Remember								
Understand				√				
Apply				✓	✓			
Analyse				✓	✓			
Evaluate					✓			
Create					✓			
		Ma	rk Distri	ibution of CIA				
		Theory	/ [L- T]	Practical [P]		Project [J]		
Course Structure [L-T-P-J]	Attendance	Assignment	Test-2	Class work	Evaluation 1	Evalaution-2 (Video Presentation)	Report	Total Marks
2-0-2-2	5	15	10	20	10	20	20	100
11	10	Tot	tal Mark	s distribution	-1:1	1		
Total Marks		CIA (M	arks)	ESE (Mar	ks)	ESE	Durat	ion
		100	1		ALC: N			

SYLLABUS

MODULE I: Introduction Microcontroller Programming

Introduction to micro controller and embedded systems, Introduction to Arduino and its IDE Concept of digital and analog ports, registers, memory, timer, counter.

Embedded C programming: Arduino data types, operators, Array, Loop, Functions.

MODULE II: Microcontroller Programming

Embedded C programming: Working with Serial Monitor, Pins Configuration as INPUT/OUTPUT, digitalRead(), digitalWrite(), Interrupts, delay(),Pull-up resistors. Interfacing a 8-bit LCD to Arduino, Running message display.

Sensor/Actuator Interface: Temperature Sensor, LDR based sensor, IR and Ultrasonic sensors, Relay, LED, Servomotor.

MODULE III: PCB Designing and Prototyping

Introduction: PCB, pads, track, SMD, trough hole, via and its Design rules. Design any two simple circuit using Easy EDA/Eagle/Flat CAM, Routing and Generating GERBER file.

PCB Chemical etching Vs Milling techniques, PCB Chemical Etching/Milling

MODULE IV: << Modelling, Slicing, Cutting, Routing >>

3D modeling, Slicing, 3 D printing, 2D design using Inkscape, Laser CAD, Laser Cutting, 2D modelling, CNC Routing, CNC Routing, Tool familiarization

MODULE V: << Documentation and version control Tools >>

Familiarization of Google Docs, Google Sheets, Google Slides, Google Drawings, Google Forms Google Sites, Creating Google sheets, Google slides, Google forms and Google sites

Doxygen – Overview, Installation, Getting started, Documenting the code, Markdown support, Lists, Grouping, Including formulas, Including tables, Graphs and diagrams, Preprocessing, Output Formats, Searching, Customizing the output, Custom Commands, Linking to external documentation,

Reference books

- 1. AICTE's Prescribed Textbook: Workshop / Manufacturing Practices (with Lab Manual), Khanna Book Publishing
- 2. All-in-One Electronics Simplified, A.K. Maini; 2021. ISBN-13: 978-9386173393, Khanna Book Publishing Company, New Delhi.
- 3. Simplified Q&A Data Science with Artificial Intelligence, Machine Learning and Deep Learning, Rajiv Chopra, ISBN: 978-9355380821, Khanna Book Publishing Company, New Delhi.
- 4. 3D Printing & Design, Dr. Sabrie Soloman, ISBN: 978-9386173768, Khanna Book Publishing Company, New Delhi.
- 5. The Big Book of Maker Skills: Tools & Techniques for Building Great Tech Projects. Chris Hackett. Weldon Owen; 2018. ISBN-13: 978-1681884325.
- 6. The Total Inventors Manual (Popular Science): Transform Your Idea into a Top-Selling Product. Sean Michael Ragan (Author). Weldon Owen; 2017. ISBN-13: 978-1681881584.
- 7. Make: Tools: How They Work and How to Use Them. Platt, Charles. Shroff/Maker Media. 2018. ISBN-13: 978-9352137374
- 8. The Art of Electronics. 3rd edition. Paul Horowitz and Winfield Hill. Cambridge University Press. ISBN: 9780521809269
- 9. Practical Electronics for Inventors. 4th edition. Paul Sherz and Simon Monk. McGraw Hill. ISBN-13: 978-1259587542
- 10. Encyclopedia of Electronic Components (Volume 1, 2 and 3). Charles Platt. Shroff Publishers. ISBN-13: 978-9352131945, 978-9352131952, 978-9352133703
- 11. Building Scientific Apparatus. 4th edition. John H. Moore, Christopher C. Davis, Michael A. Coplan and Sandra C. Greer. Cambridge University Press. ISBN-13: 978-0521878586
- 12. Programming Arduino: Getting Started with Sketches. 2nd edition. Simon Monk. McGraw Hill. ISBN-13: 978-1259641633
- 13. Make Your Own PCBs with EAGLE: From Schematic Designs to Finished Boards. Simon Monk and Duncan Amos. McGraw Hill Education. ISBN-13: 978-1260019193.
- 14. Pro GIT. 2nd edition. Scott Chacon and Ben Straub. A press. ISBN-13: 978-1484200773
- 15. Venuvinod, PK., MA. W., Rapid Prototyping Laser Based and Other Technologies, Kluwer.
- 16. Ian Gibson, David W Rosen, Brent Stucker., "Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing", Springer,

2010

17. Chapman W.A.J, "Workshop Technology", Volume I, II, III, CBS Publishers and distributors, $5^{\rm th}$ Edition,2002

	COURSE CONTENTS AND LECTURE SCHEDULE	No. of
No.		Hours
110.		[19]
	MODULE 1	
1.1	Introduction to micro controller and embedded systems,	1
1.2	Introduction to Arduino and its IDE Concept of digital and analog ports, registers, memory, timer, counter.	1
1.3	Embedded C programming: Arduino data types, operators, Array, Loop, Functions.	1
	MODULE II	\
2.1	Embedded C programming: Working with Serial Monitor, Pins Configuration as INPUT/OUTPUT.	1
2.2	Embedded C programming: digitalRead(), digitalWrite(), Interrupts, delay(),Pull-up resistors.	1
2.3	Embedded C programming: Interfacing a 8 bit LCD to Arduino, Running message display	11
2.4	Sensor/Actuator Interface: Temperature Sensor, LDR based sensor, IR and Ultrasonic sensors, Relay, LED, Servomotor Introduction: PCB, pads, track, SMD, trough hole, via and its Design rules. Routing and Generating GERBER file	1
	MODULE III	
3.1	Introduction: PCB, pads, track, SMD, trough hole, via and its Design rules.	1
3.2	Routing and Generating GERBER file	1
3.3	PCB Chemical etching Vs Milling techniques, PCB Chemical Etching/Milling	1
	MODULE IV	
4.1	3D modeling, Slicing, 3 D printing	1
4.2	2D design using Inkscape, Laser CAD	
4.3	Laser Cutting, 2D modelling, CNC Routing,	1
4.4	CNC Routing Tool familiarisation	
	MODULE V	

5.1	Familiarization of Google Docs, Google Sheets, Google Slides,	1
5.2	Google Drawings, Google Forms Google Sites	1
5.3	Doxygen – Overview, Installation, Getting started, Documenting the code, Markdown support, Lists,	1
5.4	Doxygen - Grouping, including formulas, Including tables, Graphs and diagrams, Preprocessing	1
5.5	Doxygen – Output Formats, Searching, Customizing the output, Custom Commands, Linking to external documentation	1

LESSON PLAN FOR LAB COMPONENT

No.	Торіс	No. of Hour s	Experiment
1	Introduction to micro controller and embedded systems,	98	12 / 12 / 12 / 12 / 12 / 12 / 12 / 12 /
2	Introduction to Arduino and its IDE Concept of digital and analog ports, registers, memory, timer, counter. Embedded C programming: Arduino data types, operators, Array, Loop,	3	Simple Embedded C programs: Arduino data types, operators, Array, Loop, Functions
4	Serial Monitor, Pins Configuration as INPUT/OUTPUT, digitalRead(), digitalWrite(), Interrupts, delay(),Pull-up resistors.	5	Embedded C programs to working with Serial Monitor, Pins Configuration as INPUT/OUTPUT, digitalRead(), digitalWrite(), Interrupts, delay(),Pull-up resistors. Implement: Water level control system. Distance measurement and Display unit. Home Automation system.
5	Introduction: PCB, pads, track, SMD, trough hole, via and its Design rules.	6	Design any two simple circuit using Easy EDA/ Eagle/ FlatCAM Routing and Generating GERBER file

6	PCB Chemical etching Vs Milling techniques	2	Experiments with PCB Chemical Etching/Milling				
			Machining of 3D geometry on soft material such as soft wood or modelling wax,				
	3D modeling, Slicing, 3 D printing, 2D design using Inkscape, Laser CAD, Laser Cutting, 2D modelling,		3D scanning of computer mouse geometry surface. 3D printing of scanned geometry				
7	CNC Routing, CNC Routing, Tool familiarization	14	2D profile cutting of press fit box/casing in acrylic (3 or 6 mm thickness)/cardboard,D profile cutting on plywood /MDF (6-12 mm) for press fit designs				
8	Familiarization of Google Docs, Google Sheets, Google Slides, Google, Drawings, Google Forms Google Sites	2	Exercise for creating Google sheets, Google slides, Google forms and Google sites				
9	Doxygen – Overview, Documenting the code, Markdown support, Lists, Grouping, Including formulas, Including tables, Graphs and diagrams, Preprocessing, Output Formats, Searching, Customizing the output, Custom Commands, Linking to external documentation.	4	Doxygen –Installation, Getting started Document the programs created for Raspberry pi and Arduino using Doxygen				
	Familiarisation of Version control tools - GIT and GitHub	4	At least two programs in programming exercises must be done using GitHub				
	PROJEC	e T	N *				
1	Design and implementation of a project software and machined or 3D printed						
	Documentation of the above project (F						

23HUL111/ 23HUL211	DESIGN THINKING	L	Т	P	J	s	С	Year Of Introduction
23HUL211		0	0	2	0	2	1	2023

Preamble: This course enables the students to understand the fundamentals of design thinking and use the basic tools, techniques & approaches. The various topics covered in this syllabus are: An Insight to Learning, Basics of design thinking, Being ingenious and fixing problems, Prototype and testing, Design thinking and customer centricity. This course helps the learners to apply design thinking approach while developing practical solutions for real world problems.

cours	xing pro e helps ons for	the lea	rners t	o appl		<i>O</i> ,	_	_		develor	•	,
Prere	quisite	NIL		24	_							
Cours	se Outc	omes:	After th	e comp	oletion	of the o	course 1	the stu	dent w	ill be at	ole to	
CO1	_	are and n their				_	styles	and me	emory t	echniq	ies and	l apply
CO2	-	e emo		_			_		nal ex	pressio	ns to	better
соз		p new				_			innova	ation cy	vcle of	design
CO4	Propos thinkin		ions for	real-w	vorld ei	ngineer	ing pro	blems	by app	lying cı	eative	design
CO5		ve indiv r perfor				l its in	ipact o	n every	day de	ecisions	thereb	y lead
C06		-			_	0 0				ımodati r exper		stomer
CO7	700	p new ded desig		for sim	ple pro	ducts 1	using b	io-mim	icry to	bring oเ	at new	nature
CO8	Solve p		l engino	eering _l	problen	n throu	gh inno	ovative j	produc	t desigr	and c	reative
			1	× 1	CO - I	PO MA	PPING	N	1			
СО	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12
CO1	✓							✓	✓			✓
CO2				✓		✓		✓	✓	✓		✓
соз	✓	✓	✓	✓		✓		✓	✓	✓		✓
CO4								✓	✓	✓		✓
CO5						✓		✓	✓	✓		✓
C06	✓	✓	✓			✓		✓	✓	✓		✓

CO7 🗸 🗸	✓	✓		✓	✓	✓	✓	✓		
		As	sessn	nent Patter	n					
Plaam?	Catagor			Cont	inuous	Assess	ment	Tools		
Pioom	Categor	y		Class v	vork		Ί	est 1		
Remember										
Understand				✓				✓		
Apply				✓				✓		
Analyse				✓			✓			
Evaluate				✓						
Create			-	✓						
		Mark	Distri	ibution of C	CIA					
Course Structure [L-T-P-J]		dance	C	lass work		Exam/ entatio		Total Marks		
0-0-2-0	160	5		35		10	50			
10	(10)	Tota	al Mar	k distribut	ion	16	1	/		
Total Marks	8/	CIA (Mar	ks)	ESE	(Marks)	11	ESI	E Duration		
50)/	50		- 8		1	12	7-1		

SYLLABUS

An Insight to Learning - Understanding the Learning Process, Kolb's Learning Styles, Assessing and Interpreting. Remembering Memory - Understanding the Memory process, Problems in retention, Memory enhancement techniques, Emotions: - Experience & Expression, Understanding Emotions- Experience & Expression, Assessing Empathy, Application with Peers.

Basics of Design Thinking - Definition of Design Thinking, Need for Design Thinking,

Objective of Design Thinking, Concepts & Brainstorming, Stages of Design Thinking Process (explain with examples) – Empathize, Define, Ideate, Prototype, Test

Being Ingenious & Fixing Problem - Understanding Creative thinking process, Understanding Problem Solving, Testing Creative, Problem Solving, Process of Product Design - Process of Engineering Product Design, Design Thinking Approach, Stages of Product Design, Examples of best product designs and functions, Assignment - Engineering Product Design

Prototyping & Testing - What is Prototype? Why Prototype? Rapid Prototype Development process, Testing, Sample, Example, Test Group Marketing, Celebrating the Difference - Understanding Individual differences & Uniqueness, Group Discussion and Activities to encourage the understanding, acceptance and appreciation of Individual differences

Design Thinking & Customer Centricity - Practical Examples of Customer Challenges, Use of Design Thinking to Enhance Customer Experience, Parameters of Product

experience, Alignment of Customer Expectations with Product Design, Feedback, Re-Design & Re-Create Feedback loop, Focus on User Experience, Address "ergonomic challenges, User focused design, rapid prototyping & testing, final product, Final Presentation – "Solving Practical Engineering Problem through Innovative Product Design & Creative Solution".

Text books

- 1. YousefHaik, Sangarappillai Sivaloganathan, Tamer M. Shahin, Engineering Design Process, Cengage Learning 2003, Third Edition, ISBN-10: 781305253285,
- 2. Voland, G., Engineering by Design, Pearson India 2014, Second Edition, ISBN 9332535051

Reference books

- 1. Philip Kosky, Robert Balmer, William Keat, George Wise, Exploring Engineering, Fourth Edition: An Introduction to Engineering and Design, Academic Press 2015, 4th Edition, ISBN: 9780128012420.
- 2. Clive L. Dym, Engineering Design: A Project-Based Introduction, John Wiley & Sons, New York 2009, Fourth Edition, ISBN: 978-1-118-32458-5
- 3. Nigel Cross, Design Thinking: Understanding How Designers Think and Work, Berg Publishers 2011, First Edition, ISBN: 978-1847886361
- 4. Pahl, G., Beitz, W., Feldhusen, J., Grote, K.-H., Engineering Design: A Systematic Approach, Springer 2007, Third Edition, ISBN 978-1-84628-319-2

Reference materials

- 1. Design Thinking for Strategic Innovation: What They Can't Teach You at Business or Design School, https://www.amazon.in/Design-Thinking-Strategic-Innovation-Business/dp/8126572698/
- 2. Don't Make Me Think, Revisited: A Common Sense Approach to Web Usability (3rd Edition), https://www.amazon.in/Dont-Make-Think-Revisited-Usability/dp/9332542864/
- 3. Design as Art (Penguin Modern Classics) https://www.amazon.in/Design-Art-Penguin-Modern-Classics/dp/0141035811/
- 4. Hooked: How to Build Habit-Forming Products ₹ 368 https://www.amazon.in/Hooked-How-Build-Habit-Forming-Products/dp/0241184835/
- 5. Emotional Design https://www.amazon.in/Emotional-Design-Don-Norman/dp/0465051367/
- 6. Value Proposition Design: How to Create Products and Services Customers Want https://www.amazon.in/Value-Proposition-Design-Products-Customers/dp/8126553073/
- 7. The Art Of Creative Thinking, https://www.amazon.in/Art-Creative-Thinking-Rod-Judkins/dp/1444794485/
- 8. Lateral Thinking: A Textbook of Creativity, https://www.amazon.in/Lateral-Thinking-Creativity-Edward-Bono/dp/0241257549/
- 9. This is Service Design Thinking: Basics, Tools, Cases , https://www.amazon.in/This-Service-Design-Thinking-Basics/dp/1118156307/

- 10.The Design of Business, https://www.amazon.in/Design-Business-Roger-L-Martin/dp/1422177807/
- 11. The Design Thinking Playbook: Mindful Digital Transformation of Teams, Products, Services, Businesses, and Ecosystems https://www.amazon.in/Design-Thinking-Playbook-Transformation-Businesses/dp/1119467470/
- 12. Thinking, Fast and Slow (Penguin Press Non-Fiction) https://www.amazon.in/Thinking-Fast-Penguin-Press-Non-Fiction/dp/0141033576/

	LIST OF EXPERIMENTS									
No.	Experiments									
1	 Topic: An Insight to Learning, Remembering Memory, Emotions: Experience & Expression. Group discussion/ Video presentation that addresses the concepts that shall be conveyed through the following questions. a) How learning happens? b) What are the main components of Kolb's cycle of experiential learning and examples? c) What is the memory process? d) What are the different memory enhancement techniques? e) What is the need for understanding emotions? f) Identify the different ways of assessing empathy and applying them among peers. g) Assume you got a chance to teach capitals of different countries in a UKG class. Illustrate what different memory enhancement techniques you will use through a role play. Each team member of the group lists your positive and negative emotions. Among team members, discuss how each one of you manage each emotions. (Like finding happiness, escaping from sadness, managing anger, Facing fear, Overcoming shame etc you can put more questions). After the discussion did you get some technique to manage your emotion in a better way? 									
2	 Topic: - An Approach to Introduce and Instill Design Thinking. – Class discussion based on the following questions and write down the conclusion in Work Book. a) What do you mean by designing something? What is design thinking and why it is needed? b) What are the different stages of design thinking process? c) How does the design thinking approach help engineers in creating innovative and efficient designs? d) How can the engineers arrive at better designs utilizing the iterative design thinking process (in which knowledge acquired in the later stages can be applied back to the earlier stages)? 									

	e) Describe the design thinking process using appropriate examples.
	Topic: - Activities on becoming Ingenious to Apply Design Thinking to Solve Real-world Problems.
3	Take up a real-world problem and apply creative thinking design to solve them. Make a video presentation based on your work that shall include the answer to following questions.
	a) What is creative thinking process?b) How can you describe the process of problem solving with examples?c) How creative thinking process helps in problem solving?d) How to test the efficacy of creative problem solving process?
	Topic :- Perform Designing of an Innovative Product-
4	 i) Perform group discussion on following points a) How is engineering product design different from other kinds of design? b) Where and when do engineers perform product design?
	c) What are the different stages of product design? d) What are the different examples for best product designs and functions? ii) Based on the concepts learned, design an innovative product in your
V.	mind and give presentation.
	Topic: - Learn the Prototype Development Process and Testing. Illustrate the following concepts using appropriate tools.
5	a) How to predict whether the design will function well or not?b) How do mathematics and physics become a part of the design process?c) What is Prototype? Why it is needed?d) What is rapid prototype development process?e) List the different methods in which the prototype of a product can be generated and tested.
	Topic- Active Learning the Process of Divergent-Convergent Thinking and Designing in a Team:
6	 Perform group discussion and/or other activities within a design team to refine and narrow down to the 'best design'. Create a report which specifies, how you identified and managed the following questions during the design. Describe how to create a number of possible designs and then how to refine and narrow down to the 'best design'? Why differences and uniqueness of individuals arise while designing in a team? How to manage conflicts in a design team? What is the need for different ways for communicating any design such as graphical, oral, written, presentation, models, prototypes, and so on?

	Topic: - End User Feedback to Improve Design
7	Synthesize End User Feedback to Improve Design Solution you identified in the exercise number 6.
8	 Topic: - Develop Nature-inspired Designs utilizing Bio-mimicry, aesthetic , ergonomic and life cycle design approach: i) Class discussion to understand the following concepts a) What is the significance of Modular Design, Life Cycle Design Approaches in Design? b) How does the intelligence in nature inspire engineering designs? Give examples c) How do aesthetic and ergonomic challenges modify designs? d) How do concepts like value engineering, concurrent engineering and reverse engineering influence engineering designs? ii) Based on the understanding you acquired through discussion develop
9	new designs for simple products using bio-mimicry so as to bring out new nature inspired designs. Topic: - Use Feedback to Improve Designs through Re-Design and Re-create. Get feedback of your any one of the earlier design exercises from the rest of the student groups and redesign accordingly. Also i) Answer the following questions a) How feedbacks can improve designs? How user experience helps the re-design? b) What is a typical feedback loop in design process? c) What is user focused design? d) What is the role of rapid prototyping & testing in developing the final design of products? ii) Make a presentation to show the process of redesigning of an existing
10	product based on feedbacks. Topic: - Applications of Design Thinking Make presentation to illustrate that it is possible to provide innovative solutions for practical problems through Design Thinking

23HUT212	UNIVERSAL HUMAN VALUES-II	L	Т	P	J	S	C	Year of Introduction
201101212		2	1	0	0	2	3	2023

Preamble: This course helps the students to appreciate the essential complementarity between 'VALUES' and 'SKILLS' to ensure sustained happiness and prosperity which are the core aspirations of all human beings. The topics covered in this course are the concepts of self-exploration, values and skills, happiness and prosperity, harmony in family and society, harmony in the nature and society, and ethical values needed for the life and profession of an individual. This course enables the learners to develop a holistic perspective towards life and profession & towards happiness and prosperity based on a correct understanding of the human reality and the rest of existence.

Prerequisite: Universal Human Values I (Student Induction Program)

Course Outcomes: After the completion of the course the student will be able to

- **CO1** Evaluate the significance of value inputs in formal education and start applying them in their life and profession. [Apply level]
- CO2 Distinguish between values and skills, happiness and accumulation of physical facilities, the Self and the Body, Intention and Competence of an individual. [Analyse level]
- CO3 Demonstrate the value of harmonious relationship based on trust and respect in their life and profession. [Analyze level]
- **CO4** Examine the role of a human being in ensuring harmony in society and nature. [Analyse level]
- CO5 Use the understanding of ethical conduct to formulate the strategy for ethical life and profession. [Apply level]

CO - PO MAPPING

СО	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12
CO1		11	W.	1		✓	✓	✓	✓	✓	//	✓
CO2			10	W.		✓	✓	✓	✓	✓	/	✓
CO3				1		✓	✓	✓	✓	✓		✓
CO4						✓	√	✓	✓	✓		✓
CO5						✓	√	✓	✓	✓		✓

Assessment Pattern

	Continuous	Assessmen	t Tools	
Bloom's Category	Test1	Test 2	Other tools	End Semester Examination
Remember	✓	✓	✓	✓
Understand	✓	✓	✓	✓

Apply	✓	✓	✓	✓
Analyse			✓	
Evaluate			✓	
Create			✓	

Mark Distribution of CIA

Course Structure [L-T-P-J]	Theory [L- T]			S	
	Attendance	Issignment	Test-1	Test-2	Total Mark
2-1-0-0	5	15	10	10	40

Total Mark distribution

Total Marks	CIA (Marks)	ESE (Marks)	ESE Duration
100	40	60	3 hours

End Semester Examination [ESE]: Pattern

PATTERN	PART A	PART B	ESE Marks
PATTERN 1	10 Questions, each question carries 2 marks Marks: (2x10 = 20 marks)	2 questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 2 sub divisions. Each question carries 8 marks. Marks: (5x8 = 40 marks) Time: 3 hours	60
	Total Marks: 20	Total Marks: [5x8 = 40 marks]	

SYLLABUS

MODULE I: Introduction to Value Education

Right Understanding, Relationship and Physical Facility (Holistic Development and the Role of Education), Understanding Value Education, Self-exploration as the Process for

Value Education, Continuous Happiness and Prosperity – the Basic Human Aspirations, Happiness and Prosperity – Current Scenario, Method to Fulfill the Basic Human Aspirations.

MODULE II: Harmony in the Human Being

Understanding Human being as the Co-existence of the Self and the Body, distinguishing between the Needs of the Self and the Body, The Body as an Instrument of the Self, Understanding Harmony in the Self, Harmony of the Self with the Body, Programme to ensure self-regulation and Health.

MODULE III: Harmony in the Family and Society

Harmony in the Family – the Basic Unit of Human Interaction, 'Trust' – the Foundational Value in Relationship, 'Respect' – as the Right Evaluation, Other Feelings, Justice in Human-to-Human Relationship, Understanding Harmony in the Society, Vision for the Universal Human Order.

MODULE IV: Harmony in the Nature/Existence

Understanding Harmony in the Nature, Interconnectedness, self-regulation and Mutual Fulfillment among the Four Orders of Nature, Realizing Existence as Co-existence at All Levels, Holistic Perception of Harmony in Existence.

MODULE V: Implications of the Holistic Understanding – a Look at Professional Ethics

Natural Acceptance of Human Values, Definitiveness of (Ethical) Human Conduct, A Basis for Humanistic Education, Humanistic Constitution and Universal Human Order, Competence in Professional Ethics, Holistic Technologies, Production Systems and Management Models- Typical, Strategies for Transition towards Value-based Life and Profession.

Text books

- A Foundation Course in Human Values and Professional Ethics, R R Gaur, R Asthana, G P Bagaria, 2nd Revised Edition, Excel Books, New Delhi, 2019. ISBN 978-93-87034-47-1
- 2. Teachers' Manual for A Foundation Course in Human Values and Professional Ethics, RR Gaur, R Asthana, G P Bagaria, 2nd Revised Edition, Excel Books, New Delhi, 2019.

Reference books

- 1. JeevanVidya: EkParichaya, A Nagaraj, JeevanVidyaPrakashan, Amarkantak, 1999.
- 2. Human Values, A.N. Tripathi, New Age Intl. Publishers, New Delhi, 2004.
- 3. The Story of Stuff (Book). Annie Leonard, Publisher: Free Press (February 22,

2011), ISBN13: 9781451610291

4. The Story of My Experiments with Truth - by Mohandas Karamchand Gandhi COURSE CONTENTS AND LECTURE SCHEDULE No. of No. Hours [36] MODULE 1 Understanding Value Education 1.1 1 Tutorial 1- Sharing about Oneself 1.2 1 Self-exploration as the Process for Value Education 1.3 1 Continuous Happiness and Prosperity - the Basic Human Aspirations 1.4 1 Tutorial 2 - Exploring Human Consciousness 1.5 1 Happiness and Prosperity - Current Scenario 1.6 1 Method to Fulfill the Basic Human Aspirations 1.7 1 Tutorial 3 - Exploring Natural Acceptance 1.8 1 **MODULE II** Understanding Human being as the Co-existence of the Self and the 2.1 1 Body Distinguishing between the Needs of the Self and the Body 2.2 1 Tutorial 1 - Exploring the difference of Needs of Self and Body 2.3 1 The Body as an Instrument of the Self and Understanding Harmony in 2.4 1 the Self Tutorial 2 - Exploring Sources of Imagination in the Self 2.5 1 Harmony of the Self with the Body 2.6 1 Programme to ensure self-regulation and Health 2.7 1 Tutorial 3 - Exploring Harmony of Self with the Body 2.8 1

MODULE III

3.1	Harmony in the Family – the Basic Unit of Human Interaction	1
3.2	'Trust' – the Foundational Value in Relationship	1
3.3	Tutorial 1 - Exploring the Feeling of Trust	1
3.4	'Respect' – as the Right Evaluation	1
3.5	Tutorial 2 - Exploring the Feeling of Respect	1
3.6	Other Feelings, Justice in Human-to-Human Relationship	1
3.7	Understanding Harmony in the Society and Vision for the Universal Human Order	1
3.8	Tutorial 3 - Exploring Systems to fulfill Human Goal	1
	MODULE IV	
4.1	Understanding Harmony in the Nature, Interconnectedness, self- regulation and Mutual Fulfillment among the Four Orders of Nature	1
		V.
4.2	Tutorial 1 - Exploring the Four Orders of Nature	1
4.3	Realizing Existence as Co-existence at All Levels	1
4.4	The Holistic Perception of Harmony in Existence	1
4.5	Tutorial 2 - Exploring Co-existence in Existence	1
	MODULE V	
5.1	Natural Acceptance of Human Values, Definitiveness of (Ethical) Human Conduct	1
5.2	Exploring Ethical Human Conduct	1
5.3	A Basis for Humanistic Education, Humanistic Constitution and Universal Human Order, Professional Ethics	1
5.4	Exploring Humanistic Models in Education	1
5.5	Holistic Technologies, Production Systems and Management Models- Typical Case Studies	1
5.6	Strategies for Transition towards Value-based Life and Profession	1

5.7	Exploring Steps of Transition towards Universal Human Order	1

CO Assessment Questions

- 1. What does a fulfilling life mean for you? List out the top five points that occur to you when you think of a fulfilling life. While making the list, please consider your entire life, not just the present stage of your life (youth, middle age, old age, etc.).
- 2. Choose any five things that you consider as human values. Now write all the basic guidelines, and check if you they satisfy the basic guidelines. (Hint: Someone may say Trust is a human value. Now check if it satisfies the basic guidelines.)
- 3. List your activities throughout a typical day in your life. Categorize these activities as activity for developing right understanding, activity for fulfillment in relationship and activity for physical facility (see table, below).

Activity This activity has time and effort for Right Fulfillment in Physical understanding facility relationship Exercise, playing games 2 hrs (for (2 hrs/day) health of body) Talking with friends ? 3 hrs (for relationship) 1 hr (studying 5 6 hrs Studying for values) (studying for skills) Sleeping This is just a sample list. Please make your own list Total Time and Effort Max 24 hrs Find out what percentage of your time and effort is being spent for each of these three. What do you conclude from this exercise? Find out if the following are naturally acceptable to you.

1

2

Statement	My present thinking	Naturally
	(beliefs) about the	Acceptable?
	statement	
I want to be happy		
I want to make others happy		
I want to be healthy		
I want to live in relationship		
I want to have more than others		
I want to have more than what I		
really need	COL	
Feeling of respect in	Only if you have money,	Feeling of
relationship	people respect you	respect is
1/2/2	10.	naturally
1/3//	1 240	acceptable in
//S/ \H	- IOF/	relationship

Can you observe that when you really try, you can refer to your natural acceptance? Note any five things that appear naturally acceptable to you. Now, verify for yourself that your 'natural acceptance' does not change with time or place. It does not depend on your beliefs and past conditionings and that it is always there. If not, would you still call it your natural acceptance? And if not, what can it be termed as in place of natural acceptance? e.g., eating sweets. It may appear naturally acceptable. Now explore, whether it changes with time, place and individual or not. You will see that sometimes you like eating sweets, while sometimes; you do not feel like eating sweets. Same thing happens with place. And not everyone wants to eat sweets. Thus, it does not fulfill the criterion. It is not your 'natural acceptance'. Then what is your natural acceptance? Find it out (here, while eating sweets is your liking, nurturing your Body is the natural acceptance).

3

- 1. "The pleasures that we derive from sensations are short lived and the efforts to extend them lead to misery" -Examine and illustrate this statement with an example.
- 2. Explain the activities of imaging, analyzing and selecting/tasting with a diagram. With the help of an example, show how are they related.
- 3. "If I trust everyone, people would take undue advantage of me." Do you agree? Explain.
- 4. "When we are assured of the intention of the other and find that the competence is lacking, we become a help to the other. When we doubt the intention of the other, we get into opposition." Explain.

	1. What in your opinion, is an effective way of ensuring prosperity in the
	family? What programs can you undertake in this respect?
	2. Indicate a few feasible steps to promote harmony in the society and
4	co-existence with nature.
	3. "Other than human order, the three orders are mutually fulfilling to
	each other." Explain with examples. Why does human order fail to be
	mutually fulfilling to itself and to the other orders?
	1. How does right understanding provide the basis for ethical human
	conduct? Give two examples.
	2. What are the values in interaction of human beings with the material
	things? Give one example of each.
5	3. Visualize a framework for humanistic education for children. Suggest
	a few ways to modify present day school education.
	4. Choose any one dimension (education, heath, production, justice,
	exchange) of human endeavor in a society. Suggest what role can you
	play in the chosen dimension through the orientation you are going to
	have through your professional education.

